

SAND REPORT

SAND2003-1089
Unlimited Release
Printed April 2003

Presto User's Guide Version 1.05

J. Richard Koteras and Arne S. Gullerud

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of
Energy under Contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

Issued by Sandia National Laboratories, operated for the United States Department of Energy by
Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any of
their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors. The
views and opinions expressed herein do not necessarily state or reflect those of the United States
Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from

U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865)576-8401
Facsimile: (865)576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.doe.gov/bridge

Available to the public from

U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800)553-6847
Facsimile: (703)605-6900
E-Mail: orders@ntis.fedworld.gov
Online order: http://www.ntis.gov/ordering.htm

2

SAND2003-1089
Unlimited Release
Printed April 2003

Presto User’s Guide Version 1.05

J. Richard Koteras and Arne S. Gullerud
Computational Solid Mechanics/Structural Dynamics

Engineering Sciences Center
Sandia National Laboratories

Box 5800
Albuquerque, NM 87195-0847

Abstract
Presto is a Lagrangian, three-dimensional explicit, transient dynamics code
for the analysis of solids subjected to large, suddenly applied loads. Presto is
designed for problems with large deformations, nonlinear material behavior,
and contact. There is a versatile element library incorporating both
continuum and structural elements. The code is designed for a parallel
computing environment. This document describes the input for the code that
gives users access to all of the current functionality in the code. Presto is
built in an environment that allows it to be coupled with other engineering
analysis codes. The input structure for the code, which uses a concept called
scope, reflects the fact that Presto can be used in a coupled environment.
This guide describes the scope concept and the input from the outermost to
the innermost input scopes. Within a given scope, the descriptions of input
commands are grouped based on code functionality. For example, all
material input command lines are described in a section of the user’s guide
for all of the material models in the code.
3

Acknowledgments

The authors would like to thank Joel Lash and Nathan Crane for reviewing this document
and offering many helpful suggestions for improving its clarity. The authors would also
like to thank Ken Gwinn, William Scherzinger, and Henry Duong for comments,
suggestions, and assistance in improving various parts of the user’s guide. Finally, the
authors would like to thank Rhonda Reinert of Technically Write for her careful review
and extensive editing of this document and her many valuable suggestions for improving
the organization and clarity of this document.
4

Contents

1 Introduction . 11

1.1 Overall Input Structure . 12

1.2 Conventions for Command Descriptions . 15

1.2.1 Key Words . 15

1.2.2 User-Specified Input . 15

1.2.3 Optional Input . 16

1.2.4 Default Values . 16

1.2.5 Multiple Options for Values . 16

1.3 Style Guidelines . 18

1.3.1 Comments . 18

1.3.2 Continuation Lines . 18

1.3.3 Case. 18

1.3.4 Commas . 19

1.3.5 Blank Spaces. 19

1.3.6 General Format of the Command Lines . 19

1.3.7 Delimiters . 20

1.3.8 Order of Commands . 20

1.3.9 Abbreviated END Specifications . 20

1.3.10 Indentation . 21

1.4 Naming Conventions Associated with the Exodus II Database 22

1.5 Major Scope Definitions for a Presto Input File . 23

2 Command Descriptions. 24

2.1 Utility/General Commands . 26

2.1.1 SIERRA Command Block . 26

2.1.2 Title . 26

2.1.3 Restart Control . 26

2.1.3.1 Restart Time . 27

2.1.3.2 Automatic Restart . 28

2.1.4 Functions. 29

2.1.5 Axes, Directions, and Points. 30

2.2 Materials . 32
5

2.2.1 Elastic Model . 33

2.2.2 Elastic-Plastic Model . 34

2.2.3 Elastic-Plastic Power-Law Hardening Model. 35

2.2.4 Soil and Crushable Foam Model. 36

2.2.5 Foam Plasticity Model . 38

2.2.6 Orthotropic Crush Model . 40

2.2.7 Orthotropic Rate Model . 42

2.2.8 Mie-Gruneisen Model. 44

2.2.9 Mie-Gruneisen Power-Series Model. 45

2.2.10 JWL (Jones-Wilkins-Lee) Model . 46

2.2.11 Ideal Gas Model . 47

2.3 Finite Element Model . 49

2.3.1 Definition of Material Model . 51

2.3.2 Element Strain Formulation . 52

2.3.3 Linear and Quadratic Bulk Viscosity . 52

2.3.4 Hourglass Control . 52

2.3.5 Membrane Scale Thickness . 52

2.3.6 Control Parameters for Shell Elements. 53

2.3.7 Truss Area. 54

2.3.8 Damper Area. 54

2.3.9 Energy Deposition . 54

2.3.10 Element Numerical Formulation. 55

2.3.11 Deactivate All Elements in an Element Block 56

2.4 Presto Region and Procedure . 57

2.4.1 Presto Procedure . 57

2.4.2 Time Control. 57

2.4.2.1 Command Blocks for Time Control and Time Stepping

. 57

2.4.2.2 Initial Time Step . 59

2.4.2.3 Time Step Scale Factor . 59

2.4.2.4 Time Step Increase Factor . 59

2.4.2.5 Step Interval . 60

2.4.2.6 Example . 61

2.4.3 Presto Region . 61
6

2.5 Use Finite Element Model. 62

2.6 Kinematic Boundary Conditions. 63

2.6.1 Fixed Displacement Components . 63

2.6.2 Prescribed Displacement. 63

2.6.3 Prescribed Velocity. 64

2.6.4 Prescribed Acceleration . 65

2.6.5 Fixed Rotation. 65

2.6.6 Prescribed Rotation. 66

2.7 Initial Conditions. 67

2.7.1 Initial Velocity Direction . 67

2.7.2 Initial Angular Velocity . 67

2.8 Force Boundary Conditions . 69

2.8.1 Pressure . 69

2.8.2 Prescribed Force . 69

2.8.3 Prescribed Moment . 70

2.9 Specialized Boundary Conditions . 71

2.9.1 Gravity . 71

2.9.2 Cavity Expansion . 71

2.9.3 Periodic . 73

2.9.4 Silent Boundary . 75

2.9.5 Spot-Weld . 75

2.10 Constraints. 78

2.10.1 Constant Distance Constraint . 78

2.10.2 Hex Shell Constraint . 78

2.11 Mass Property Calculations. 80

2.12 Contact . 81

2.12.1 Contact Definition Block . 82

2.12.2 Descriptions of Contact Surfaces . 83

2.12.2.1 Contact Surface. 83

2.12.2.2 Contact All Blocks . 84

2.12.3 Remove Initial Overlap. 84

2.12.4 Angle for Multiple Interactions . 85

2.12.5 Iterative Enforcement . 85
7

2.12.6 Friction Models. 85

2.12.6.1 Frictionless Model . 86

2.12.6.2 Constant Friction Model . 86

2.12.6.3 Tied Model . 86

2.12.7 Analytic Contact Surfaces. 86

2.12.7.1 Plane . 86

2.12.7.2 Cylinder. 87

2.12.7.3 Sphere . 88

2.12.8 Default Values for Interactions. 88

2.12.8.1 Normal and Tangential Tolerance 89

2.12.8.2 Normal and Tangential Overlap Tolerance. 90

2.12.8.3 Friction Model . 90

2.12.8.4 Automatic Kinematic Partition 91

2.12.9 Values for Specific Interactions . 91

2.12.9.1 Surface Identification . 92

2.12.9.2 Kinematic Partition . 93

2.12.10 Example . 93

2.13 Results Output . 95

2.13.1 Output Nodal Variables . 96

2.13.2 Output Element Variables. 97

2.13.3 Output Global Variables . 97

2.13.4 Set Begin Time for Results Output. 98

2.13.5 Adjust Interval for Time Steps . 98

2.13.6 Output Interval Specified by Time Increment 98

2.13.7 Additional Times for Output. 98

2.13.8 Output Interval Specified by Step Increment 98

2.13.9 Additional Steps for Output . 99

2.13.10 Set End Time for Results Output . 99

2.14 History Output. 100

2.14.1 Output Variables . 101

2.14.1.1 Nodal and Element Output Variables 101

2.14.1.2 Global Output Variables . 101

2.14.2 Set Begin Time for History Output. 102

2.14.3 Adjust Interval for Time Steps . 102
8

2.14.4 Output Interval Specified by Time Increment 102

2.14.5 Additional Times for Output. 102

2.14.6 Output Interval Specified by Step Increment 103

2.14.7 Additional Steps for Output . 103

2.14.8 Set End Time for History Output . 103

2.15 Restart Data . 104

2.15.1 Set Begin Time for Restart Writes . 105

2.15.2 Adjust Interval for Time Steps . 105

2.15.3 Restart Interval Specified by Time Increment 106

2.15.4 Additional Times for Restart . 106

2.15.5 Restart Interval Specified by Step Increment 106

2.15.6 Additional Steps for Restart . 106

2.15.7 Set End Time for Restart Writes. 106

3 Example Problem. 107

References . 114

Appendix A: Command Specification . 116

Appendix B: Registered Variables. 127

Index . 132
9

10

Figures

2.1 Periodic structure. . 73

2.2 Force-displacement curve for spot-weld.. 76

2.3 Illustration of normal and tangential tolerances. 89

3.1 Mesh for example problem: (a) Box (blue and green surfaces) with plate in top (red
surface) and (b) Mesh with blue and red surfaces removed to show internal spheres
(yellow). 107

3.2 Results of Crush 124 Spheres test.. 107

Presto User’s Guide Version 1.05

1 Introduction
Presto is a three-dimensional transient dynamics code with a versatile element library,
nonlinear material models, large deformation capabilities, and contact. It is built on the
SIERRA Framework [1]. SIERRA provides a data management framework in a parallel
computing environment that allows the addition of capabilities in a modular fashion.
Contact capabilities are parallel and scalable; these capabilities are provided by ACME
[2].

This document describes how to create an input file for Presto. Highlights of the document
contents are as follows:

• Section 1 describes the overall structure of the input file, including conventions for the
command descriptions, style guidelines for file preparation, and naming conventions
for input files that reference the Exodus II database [3]. The section concludes with an
example of the general structure of an input file employing the concept of scope.

• Section 2 provides detailed descriptions of the commands that can be used in a Presto
input file. These command descriptions are grouped in sections based on their
functionality. For example, the commands for kinematic boundary conditions are
described in one section; the commands for contact definition are described in another
section.

• Section 3 provides a sample input file from an analysis of 16 lead spheres being
crushed together inside a steel box.

• References lists the sources cited in this document.

• Appendix A gives all of the permissible Presto input lines in their proper scope.

• Appendix B contains the registered variables that can be selected for output in the
results file.
11

1.1 Overall Input Structure
Presto is only one of the codes built on the SIERRA Framework. The SIERRA Framework
provides the capability to perform multiphysics analyses using a number of codes built on
the SIERRA Framework. Input files may be constructed for analyses using only Presto, or
input files may be constructed for analyses using Presto and some other analysis code built
on the SIERRA Framework. For example, you might run Adagio [4], the quasti-static
structural response code, to compute a stress state, and then pass the results of this analysis
to Presto as initial conditions for the Presto analysis. For a multiphysics analysis using
Presto and Adagio, the input commands for the analysis will appear in a single input file.
The time-step control, the mesh-related definitions, and the boundary conditions for both
Presto and Adagio will all be in the same input file. Therefore, the input for Presto reflects
the fact that a Presto analysis could be part of a multiphysics analysis.

To create files defining multiphysics analyses, the input files use a concept called scope.
Scope is used to group similar commands; a scope can be nested inside another scope. The
broadest scope in the input file is the domain scope. The domain scope contains
information that is physics independent. Examples of physics-independent information are
definitions of functions and materials. Thus, in our above example of a Presto/Adagio
multiphysics analysis, both Adagio and Presto could reference functions to define such
things as time histories for boundary conditions or stress-strain curves. Some of the
functions could even be shared by these two applications. Both Presto and Adagio would
share information about materials. These codes would reference the same definitions of
material models.

Within the domain scope are two other important scopes—the procedure scope and the
region scope. For a multiphysics analysis, the domain scope could contain several
different procedures and several different regions. For Presto, the procedure scope controls
the overall analysis from the start time to the end time. The region scope controls a single
time step. The region is nested inside the procedure, and the procedure is nested inside the
domain. In addition to the region scope, the procedure scope also contains a scope for
controlling the time steps. This time-step control scope sets the start and end times for the
analysis, and is nested inside the procedure scope but outside the region scope.

Inside the region scope for Presto are such things as definitions for boundary conditions
and contact. The mesh is also specified in the region. In a multiphysics analysis, there
would be more than one region. In our Presto/Adagio example, there would be both a
Presto region and an Adagio region. The definitions for boundary conditions and contact
and the mesh specification for Presto would appear in the Presto region; the definitions for
boundary conditions and contact and the mesh specification for Adagio would appear in
the Adagio region.

The input for Presto consists of command blocks and command lines. The command
blocks define a scope. These command blocks group command lines or other command
blocks that share a similar functionality. A command block will begin with an input line
that has the word “begin”; the command block will end with an input line that has the
12

word “end”. The domain scope, for example, is defined by a command block that begins
with an input line of the form

BEGIN SIERRA my_problem .

The two character strings BEGIN and SIERRA are the key words for this command block.
An input line defining a command block or command line will have one or more key
words. The string my_problem is a user-specified name for this domain scope. The
domain scope is terminated by an input line of the form

END SIERRA my_problem ,

where END and SIERRA are the key words to end this command block. If all of the scopes
are properly nested, the domain scope can also be terminated simply by using

END .

This abbreviated command line will be discussed in more detail in later sections. There are
similar input lines used to define the procedure and region scopes. Boundary conditions
are another example where a scope is defined. A particular instance of a boundary
condition for a prescribed displacement boundary condition is defined with a command
block. The command block for the boundary condition begins with an input line of the
form

BEGIN PRESCRIBED DISPLACEMENT

and ends with an input line of the form

END PRESCRIBED DISPLACEMENT

or just simply

END .

Command lines appear within the command blocks. The command lines typically have the
form keyword = value, where value can be a real, an integer, or a string. In the
previous example of the prescribed displacement boundary condition, there would be
command lines inside the command block that are used to set various values. For example,
the boundary condition might apply to all nodes in node set 10, in which case there would
be a command line of the form

NODE SET = nodelist_10 .

If the prescribed displacement were to be applied along a given component direction, there
would be a command line of the form

COMPONENT = X ,

which would specify that the prescribed displacement would be in the x-direction. Finally,
if the displacement magnitude is described by a time history function with the name
cosine_curve, there would a command line of the form

FUNCTION = cosine_curve .
13

The command block for the boundary condition with the appropriate command lines
would appear as follows:

BEGIN PRESCRIBED DISPLACEMENT
NODE SET = nodelist_10
COMPONENT = X
FUNCTION = cosine_curve

END PRESCRIBED DISPLACEMENT .

It is possible to have a command line with the same key words appearing in different
scopes. For example, we might have a command line identified by the word TYPE in two
or more different scopes. The command line would perform different functions based on
the scope in which it appeared, and the associated value could be different in the two
locations.

The input lines are read by a parser that searches for recognizable key words. If the key
words in an input line are not in the list of key words used by Presto to describe command
blocks and command lines, the parser will generate an error. A set of key words defining a
command line or command block for Presto that is not in the correct scope will also cause
the parser to generate an error. For example, the key words STEP INTERVAL define a
valid command line in the scope of the TIME CONTROL command block. However, if this
command line were to appear in the scope of one of the boundary conditions, it would not
be in the proper scope and the parser would generate an error. Once the parser has an input
line with any recognizable key words in the proper scope, a method can be called that will
handle the input line.
14

1.2 Conventions for Command Descriptions
The conventions below are used to describe the input commands for Presto. NOTE: In this
document, all of the sentences containing input lines are punctuated correctly. For
example, the function command line in a sentence such as this one would appear as

FUNCTION = <string>function_name .

The space after function_name indicates that the period following this space is not a
part of the command line but is the correct punctuation in the text. The above command
line in the input file would NOT have a period.

A number of the individual command lines discussed in the text appear on several text
lines. In the text of this user’s guide, the continuation symbols that are used to continue
lines in an actual input file (/# and /$, Section 1.3.2) are not used for those instances
where the description of the command line appears on several text lines. The description
of command lines will clearly indicate all of the key words, delimiters, and values that
constitute a complete command line. As an example, the DEFINE POINT command line
(Section 2.1.5) is presented in the text as

DEFINE POINT <string>point_name WITH COORDINATES
<real>value_1 <real>value_2 <real>value_3 .

If the DEFINE POINT command line were used as a command line in an input file and
spread over two input lines, it would appear, with actual values, as

DEFINE POINT center WITH COORDINATES /#
10.0 144.0 296.0 ,

where the /# symbol implies the first line is continued onto the second line.

1.2.1 Key Words
The key word or key words for a command are shown in uppercase letters. For actual
input, you can use all uppercase letters for the key words, all lowercase letters for the key
words, or some combination of uppercase and lowercase letters for the key words.

1.2.2 User-Specified Input
The input that you supply is shown in lowercase letters. The user-supplied input may be a
real number, an integer, or a string. For the command descriptions, a type appears before
the user input. The type (real, integer, string) description is enclosed by angle brackets,
<>, and precedes the user-supplied input. For example,

<real>value

indicates that the quantity value is a real. For the description of an input command, you
would see

FUNCTION = <string>function_name .
15

Your input would be

FUNCTION = my_name

if you have specified a function name called my_name.

Valid user input consists of the following:

<integer> Integer data is a single integer number.

<real> Real data is a single real number. It may be formatted with the
usual conventions, such as 1234.56 or 1.23456e+03.

<string> String data is a single string.

<string list> A string list consists of multiple strings separated by white space, a
comma, or white space combined with a comma.

1.2.3 Optional Input

Anything enclosed by square brackets, [], in the input line descriptions represents
optional input.

1.2.4 Default Values

A value enclosed by parentheses, (), appearing after the user input denotes the default
value. For example,

SCALE FACTOR = <real>scale_factor(1.0)

implies the default value for scale_factor is 1.0. Any value you specify will overwrite
the default.

1.2.5 Multiple Options for Values

Quantities separated by the| symbol indicate that one and only one of the possible choices
must be selected. For example,

EXPANSION RADIUS = <string>SPHERICAL|CYLINDRICAL

implies that expansion radius must be defined as SPHERICAL or CYLINDRICAL. At least
one value must appear. This convention also applies to some of the command options
within a begin/end block. For example,

SURFACE = <string>surface_name |
NODE SET = <string>nodelist_name

in a command block specifies that either a surface or node set must be specified.
16

Quantities separated by the / symbol can appear in any combination, but any one quantity
in the sequence can appear only once. For example,

COMPONENTS = <string>X/Y/Z

implies that components can equal any combination of X, Y, and Z. Any value (X or Y or
Z) can appear at most once, and at least one value of X, Y, or Z must appear. Some
examples of valid expressions in this case are

COMPONENTS = Z ,
COMPONENTS = Z X ,
COMPONENTS = Y X Z ,

and

COMPONENTS = Z Y X .

An example of an invalid expression would be

COMPONENTS = Y Y Z .
17

1.3 Style Guidelines
This section gives information that will affect the overall organization and appearance of
your input file. It also contains recommendations that will help you construct input files
that are readable and easy to proof.

1.3.1 Comments
A comment is anything between the # symbol or the $ symbol and the end-of-line. If the
first nonblank character in a line is a # or $, the entire line is a comment line. You can also
place a # or $ (preceded by a blank space) after the last character in an input line used to
define a command block or command line.

1.3.2 Continuation Lines
An input line can be continued by placing a \# pair of characters or by the \$ at the end of
the line. The following line is then taken to be a continuation of the preceding line that was
terminated by the \# or \$. Note that everything after the line-continuation pair of
characters is discarded, including the end-of-line.

1.3.3 Case
Almost all of the character strings in the input lines are case insensitive. For example, the
BEGIN SIERRA key words could appear as

BEGIN SIERRA

or

begin sierra

or

Begin Sierra .

You could specify a SIERRA command block with

BEGIN SIERRA BEAM

and terminate the command block with

END SIERRA beam .

There are a few exceptions where case is important. For example, in the specification of
variable names for results output there are some variable names with a mixture of
lowercase and uppercase letters. Check the appendices on registered variables. Also,
specifications of file names are case sensitive. If you have defined a restart file with
uppercase and lowercase letters and want to use this file for a restart, the file name you use
to request this restart file must exactly match the original definition you chose.
18

1.3.4 Commas
Commas in input lines are ignored.

1.3.5 Blank Spaces
We highly recommend that everything be separated by blank spaces. For example, a
command line of the form

 node set = nodelist_10

is recommended over

 node set= nodelist_10

or

 node set =nodelist_10 .

Both of the above two lines are correct, but it is easier to check the first form (the equal
sign surrounded by blank space) in a large input file.

The parser will accept the line

BEGIN SIERRABEAM ,

but it is harder to check this line for the correct spelling of the key words and the intended
domain name than the line

BEGIN SIERRA BEAM .

It is possible to introduce hard-to-detect errors because of the way in which the blank
spaces are handled by the command parser. Suppose you type

begin definition for functions my_func

rather than the correct form, which is

begin definition for function my_func .

For the incorrect form of this command line (in which functions is used rather than
function), the parser will generate a string name of

s my_func

for the function name rather than the expected name of

my_func.

If you attempt to use a function named my_func, the parser will generate an error because
the list of function names will include s my_func but not my_func.

1.3.6 General Format of the Command Lines
In general, command lines have the form
19

 keyword = value .

This pattern is not always followed, but it describes the vast majority of the command
lines.

1.3.7 Delimiters
We recommend that you use only the = sign when a delimiter is required. For most
command lines, you can actually use =, is, or are interchangeably as a delimiter. For
command lines with a delimiter, you could specify

 components = X ,

or

 components is X ,

or

 components are X .

The = sign is strongly recommended as the delimiter of choice. It provides a strong visual
cue for separating key words from values. By relying on the = sign as a delimiter, it will be
much easier to proof your input file. It will also make it easier to do “cut and paste”
operations. If you accidently delete an = sign, it is much easier to detect than accidently
removing part of an is or are delimiter.

1.3.8 Order of Commands
There are no requirements for ordering the commands. Both the input sequence

 BEGIN PRESCRIBED DISPLACEMENT
 NODE SET = nodelist_10
 COMPONENT = X
 FUNCTION = cosine_curve
 END PRESCRIBED DISPLACEMENT

and the input sequence

 BEGIN PRESCRIBED DISPLACEMENT
 FUNCTION = cosine_curve
 COMPONENT = X
 NODE SET = nodelist_10
 END PRESCRIBED DISPLACEMENT

are valid, and they produce the same result. REMEMBER, however, that command lines
and command blocks must appear in the proper scope.

1.3.9 Abbreviated END Specifications
It is possible to terminate a command block without including the key word or key words
that identify the block. For example, you could define a specific instance of the prescribed
displacement boundary condition with
20

 BEGIN PRESCRIBED DISPLACEMENT

and terminate it simply with

 END

as opposed to

 END PRESCRIBED DISPLACEMENT .

Both the short termination (END only) and the long termination (END followed by
identification, or name, of the command block) are valid. It is recommended that the long
termination be used for any command block that becomes large. For example, the
RESULTS OUTPUT command block described in later sections can become fairly lengthy,
so this is probably a good place to use the long termination. For most boundary conditions,
the command block will typically consist of five lines. In such cases, the short termination
can be used. Using the long termination for the larger command blocks will make it easier
to proof your input files.

1.3.10 Indentation
When constructing an input file, it is useful to indent a scope that is nested inside another
scope. Command lines within a command block should also be indented in relation to the
lines defining the command block. This will make it easier to construct the input file with
everything in the correct scope and with all of the command blocks in the correct
structure.
21

1.4 Naming Conventions Associated with the
Exodus II Database

When the mesh file has an Exodus II format, there are three basic conventions that apply
to user input for various command lines. First, for a mesh file with the Exodus II format,
the Exodus II side set is referenced as a surface. In SIERRA, a surface consists of faces on
the surface of an element block plus all of the nodes and edges associated with these faces.
A surface definition can be used not only to select a group of faces but also to select a
group of edges or a group of nodes that are associated with those faces. In the case of
boundary conditions, a surface definition can be used not only to apply boundary
conditions that typically use surface specifications (pressure) but also to apply boundary
conditions for what are referred to as nodal boundary conditions (fixed displacement
components). For nodal boundary conditions that use the surface specification, all of the
nodes associated with the faces on a specific surface will have this boundary condition
applied to them. The specification for a surface identifier in the following sections is
surface_name. It typically has the form surface_integerid, where integerid is
the integer identifier for the surface. If the side set is 125, the value of surface_name
would be surface_125. It is also possible to generate an alias for the side set and use this
for surface_name. If surface_125 is aliased to outer_skin, then surface_name
becomes outer_skin in the actual input line.

Second, for a mesh file with the Exodus II format, the Exodus II node set is still referenced
as a node set. A node set can be used only for cases where a group of nodes needs to be
defined. The specification for a node set identifier in the following sections is
nodelist_name. It typically has the form nodelist_integerid, where integerid
is the integer identifier for the node set. If the node set is 225, the value of
nodelist_name would be nodelist_225. It is also possible to generate an alias for the
node set and use this for nodelist_name. If nodelist_225 is aliased to inner_skin,
then nodelist_name becomes inner_skin in the actual input line.

Third, an element block remains a block. The specification for an element block identifier
in the following sections is block_name. It typically has the form block_integerid,
where integerid is the integer identifier for the block. If the element block is 300, the
value of block_name would be block_300. It is also possible to generate an alias for the
block and use this for block_name. If block_300 is aliased to big_chunk, then
block_name becomes big_chunk in the actual input line.
22

1.5 Major Scope Definitions for a Presto Input
File

The typical Presto input file will have the structure shown below. The major scopes—
domain, procedure, and region—are delineated with input lines for command blocks.
Comment lines are included that indicate some of the key scopes that will appear within
the major scopes. Note the indentation used for this example.

BEGIN SIERRA <string>some_name
#
All command blocks and command lines in the domain
scope appear here. The PROCEDURE PRESTO command
block is the beginning of the next scope.
#
function definitions
material descriptions
description of mesh file
#
BEGIN PROCEDURE PRESTO <string>procedure_name

#
time step control
#
BEGIN REGION PRESTO <string>region_name

#
All command blocks and command lines in the
region scope appear here.
#
specification for output of result
specification for restart
boundary conditions
definition of contact
#

END [REGION PRESTO <string>region_name]
END [PROCEDURE PRESTO <string>procedure_name]

END [SIERRA <string>some_name]
23

2 Command Descriptions
This section describes the commands recognized by the parser in Presto. The commands
are grouped by functionality, as follows:

2.1 Utility/General Commands. These general command blocks and command lines
appear only in the domain scope. They will define such things as material models,
functions, and special geometric entities.

2.2 Materials. These command blocks and command lines appear only in the domain
scope. PROPERTY SPECIFICATION FOR MATERIAL command blocks define all of
the parameters for one or more material models.

2.3 Finite Element Model. These command blocks and command lines appear only in
the domain scope. A FINITE ELEMENT MODEL command block provides the
description of a mesh that will be associated with the analysis. Embedded in this
command block are descriptions for each of the element blocks.

2.4 Presto Region and Procedure. These command blocks specify the region and the
procedure. The region scope is nested inside the procedure scope, and the procedure
scope is nested inside the domain scope. The TIME CONTROL command block is
nested inside the procedure scope (but outside the region scope).

2.5 Use Finite Element Model. This command specifies the model (described in
Section 2.3) to be used in the region.

2.6 Kinematic Boundary Conditions. These command blocks and command lines
appear only in the region scope. They define a variety of kinematic boundary
conditions.

2.7 Initial Conditions. These command blocks and command lines appear only in the
region scope. They define several initial conditions.

2.8 Force Boundary Conditions. These command blocks and command lines appear
only in the region scope. They define a variety of force boundary conditions.

2.9 Specialized Boundary Conditions. These command blocks and command lines
appear only in the region scope. They define a number of specialized boundary
conditions such as those for nonreflecting surfaces, periodic structures, and cavity
expansion.

2.10 Constraints. These command blocks and command lines appear only in the
region scope. They define constraint relations.

2.11 Mass Property Calculations. A command block for this functionality appears
only in the region scope. The command lines associated with this block specify mass
24

property calculations for a single element block or a structure defined by a group of
element blocks.

2.12 Contact. These command blocks and command lines appear only in the region
scope. They define various input parameters for controlling the contact algorithm
(ACME).

2.13 Results Output. These command blocks and command lines appear only in the
region scope. They control the type of information written to results files and the
frequency at which this information is written.

2.14 History Output. These command blocks and command lines appear only in the
region scope. They control the type of information written to history files and the
frequency at which this information is written.

2.15 Restart Data. These command blocks and command lines appear only in the
region scope. They control the frequency at which restarts are written.

A complete list of commands within their proper scope is given in Appendix A.
25

2.1 Utility/General Commands
These commands are used to set up some of the fundamentals of the Presto input. The
commands are physics independent, or at least can be shared between physics. The
commands lie in the domain scope, not in the procedure or region scope.

2.1.1 SIERRA Command Block
BEGIN SIERRA <string>name

#
All other command blocks and command lines
appear within the domain scope defined by
begin/end sierra.
#

END [SIERRA <string>name]

All input commands for Presto must occur within a SIERRA command block. The syntax
for beginning the command block is

BEGIN SIERRA <string>name

and for terminating the command block is

END [SIERRA <string>name] ,

where name is a name for the SIERRA command block. All other commands for the
analysis must be within this command block structure. The name for the SIERRA
command block is often a descriptive name that identifies the analysis. The name is not
currently used anywhere else in the file and is completely arbitrary.

2.1.2 Title
TITLE <string list>title

To permit a fuller description of the analysis, the Presto input has a TITLE command line
for the analysis, where title is a text description of the analysis.

This title is not currently used in the analysis. It simply appears in the input file for added
information about the analysis.

2.1.3 Restart Control
The restart capability in Presto allows a user to run an analysis up to a certain time, stop
the analysis at that time, and then restart the analysis at this stop time. The use of the
restart capability involves commands in both the domain scope and the region scope.
One of two restart command lines (RESTART or RESTART TIME) in the domain scope is
used to select a time at which a restart is to begin. A command block in the region scope
(RESTART DATA) specifies restart file names and the frequency at which the restart files
will be written. The RESTART DATA command block is described in Section 2.15. This
section discusses the command lines that appear in the domain scope.
26

When using the restart capability, you can reset a number of the parameters in the input
file. Not all parameters, however, can be reset. Users should exercise care in resetting
parameters in the input file for a restart.

There are two methods to initiate a restart with Presto. First, you can specify a time from a
specific restart file for the restart. This method uses the RESTART TIME command line
described in Section 2.1.3.1. Second, you can specify an automatic restart feature. This
method uses the RESTART command line described in Section 2.1.3.2. The command lines
for both of these methods are in the domain scope. All other commands for restart are in
the region scope in the RESTART DATA command block.

For restarts specified with a restart time from a specific restart file, the user will have to be
concerned about overwriting information in existing files. The issue of overwriting
information is discussed in Section 2.1.3.1.

Restart can be used to break a long-running analysis into several smaller runs so that the
user can examine intermediate results before proceeding with the next step. The examples
in the Section 2.1.3.1 describe this use of restart. Restart can also be used in case of
abnormal termination. If a restart file has been written at various intervals throughout the
analysis up to the point where the termination has occurred, you can pick some restart
time before the termination and restart the problem from there. Thus, users do not have to
go back to the beginning of the analysis, but can continue the analysis at some time well
into the analysis.

The amount of data written at a restart time is quite large. The restart data written at a
given time is a complete description of the state for the problem at that time. The restart
data includes not only information such as displacement, velocity, and acceleration, but
also information such as elements stresses and and all of the state variables for the
material model associated with each element.

2.1.3.1 Restart Time

RESTART TIME = <real>restart_time

The RESTART TIME command line is used to specify a time from a specific restart file for
the restart run.

To understand how the RESTART TIME command line is used, assume that an initial run
(with no restart time specified) is made with termination time . For this initial run, a

restart file is written at time (and possibly at other times). The restart file can be used in

a second run. In the second run with restart, the user specifies a new termination time ,

with . The input file for the restart run will include the RESTART TIME command

line with a time less than or equal to . This process may be repeated any number of

times to do a sequence of restarts.

T 0

T 0

T 1

T 1 T 0>

T 0
27

This restart option will pick the restart time on the restart file that is closest to the user-
specified time on the RESTART TIME command line. If the user specifies a restart time
greater than the last time written to a restart file, then the last time written to the restart file
is picked as the restart time.

For this first run, assume that the restart file is called beam.r. If the name of the restart file
has not been changed in the input for the run from to , the second run will

automatically generate a new restart file beam.r-s0002. Now suppose that a new restart
is initiated to run to time , with . If, as before, the name of the restart file has not

been changed in the input for the run from to , the third run will use the same restart

file named beam.r-s0002. The restart information from time to will overwrite the

restart information from time to . By using the automatic restart feature described in

the next section, however, you can force the restart files to be incremented automatically
so that the restart file from to would be beam.r-s0003. A similar pattern for file

suffixes also occurs for the results output files and the history files if the names for these
files are not changed in the input file for the various runs up to time .

To prevent the overwriting of existing restart files, you can specify both an input restart file
and an output restart file and rename the results output and history files for the various
restarts. The use of the RESTART TIME command line requires the user to be more active
in the management of the file names to prevent the overwriting of information. The
automatic restart feature prevents the overwrite of restart, results output, and history files.

2.1.3.2 Automatic Restart

RESTART = AUTOMATIC

The RESTART command line automatically selects for restart the last restart time written
to the last restart file.

To understand how the RESTART command line is used, assume an initial run (with no
restart time specified) is made with termination time . For this first run, a restart file is

written with at least one requested restart time equal to . For this first run, assume that

the restart file has been called beam.r. In the second run with restart, the user will specify
a new termination time , with . The restart run will include the RESTART

command line. The second run will start at time even if there are restart times less than

 written to the restart file. If the name of the restart file has not been changed in the

input for the run from to , the second run will automatically generate a new restart

file named beam.r-s0002. Suppose the last restart written to beam.r-s0002 is at time
. If a new restart is initiated to run to time , with , and the automatic restart

option is used, the new restart begins at time . If, as before, the name of the restart file

T 0 T 1

T 2 T 2 T 1>

T 1 T 2

T 1 T 2

T 0 T 1

T 1 T 2

T 2

T 0

T 0

T 1 T 1 T 0>

T 0

T 0

T 0 T 1

T 1 T 2 T 2 T 1>

T 1
28

has not been changed in the input for the run from to , the third run will

automatically generate a new restart file named beam.r-s0003. This process may be
repeated any number of times.

The automatic increment feature applied to the restart file names is also applied to the
results output files and the history files. If our first results output file is beam.e and the
name of the results output file is not changed in the input files for the restarts, the
subsequent results output files will be beam.e-s0002, beam.e-s0003, etc. A similar
pattern will hold for history files. If our first history file is beam.h, the subsequent history
files will be beam.h-s0002, beam.h-s0003, etc. if the name of the history file is not
changed in the input files for the restarts.

The automatic restart feature lets the user restart runs with minimal changes to the input
file. The only quantity that must be changed to move from one restart to another is the
termination time.

2.1.4 Functions
BEGIN DEFINITION FOR FUNCTION <string>function_name
 TYPE = <string>CONSTANT | PIECEWISE LINEAR
 [ABSCISSA = <string>abscissa_label]
 [ORDINATE = <string>ordinate_label]
 BEGIN VALUES
 <real>value_1 [<real>value_2
 <real>value_3 <real>value_4
 ... <real>value_n]
 END [VALUES]
END [DEFINITION FOR FUNCTION <string>function_name]

A number of Presto features are driven by a user-defined description of the dependence of
one variable on another. For instance, the prescribed displacement boundary condition
requires the definition of a time-versus-displacement relation, and the thermal strain
computations require the definition of a thermal-strain-versus-temperature relation.
SIERRA provides a general method of defining these relations as functions using the
DEFINITION FOR FUNCTION command block, as shown above.

The values in the above input lines of this command block are as follows:

- The string function_name is a name for the function that is unique to the
function definitions within the input file. This name is used to refer to this function
in other locations in the input file.

- The string function_type defines the type of the function. The value of
function_type can be CONSTANT or PIECEWISE LINEAR.

- The string abscissa_label is an optional label that describes the independent
variable (x-axis).

- The string ordinate_label is an optional label that describes the dependent
variable (y-axis).

T 1 T 2
29

- The real values value_1 through value_n describe the function. For a constant
function, only one value is needed. For a piecewise linear function, the values are
(x, y) pairs of data that describe the function. The values are nested inside a VALUES
command block.

For any value greater than the last abscissa value in the function, the last ordinate value is
used for the function value. For example, suppose we have a piecewise linear function that
indicates a function my_func describes a time history for a pressure load where the

pressure increases from 0 to 50,000 psi from time 0.0 sec to time sec. The last

time specified in the function is . Now, suppose our final analysis time is

 sec. Then, from the time to the time , the value for this
function (my_func) will be 50,000 psi.

There is no limit to the number of functions that can be defined. All function definitions
must appear within the domain scope.

2.1.5 Axes, Directions, and Points
DEFINE POINT <string>point_name WITH COORDINATES

<real>value_1 <real>value_2 <real>value_3
DEFINE DIRECTION <string>direction_name WITH VECTOR

<real>value_1 <real>value_2 <real>value_3
DEFINE AXIS <string>axis_name WITH POINT

<string>point_1 POINT <string>point_2
DEFINE AXIS <string>axis_name WITH POINT

<string>point DIRECTION <string>direction

A number of Presto features require the definition of geometric entities. For instance, the
prescribed displacement boundary condition requires a direction definition, and the
cylindrical velocity initial condition requires an axis definition. Currently, Presto input
permits the definition of points, directions, and axes. Definition of these geometric entities
occurs in the domain scope.

The DEFINE POINT command line is used to define a point:

DEFINE POINT <string>point_name WITH COORDINATES
<real>value_1 <real>value_2 <real>value_3 ,

where

- The string point_name is a name for this point. This name must be unique to all
other points defined in the input file.

- The real values value_1, value_2, and value_3 are the x, y, and z coordinates of
the point.

The DEFINE DIRECTION command line is used to define a direction:

DEFINE DIRECTION <string>direction_name WITH VECTOR
<real>value_1 <real>value_2 <real>value_3 ,

1.0 10 3–×

1.0 10 3–×

2.0 10 3–× 1.0 10 3–× 2.0 10 3–×
30

where

- The string direction_name is a name for this direction. This name must be
unique to all other directions defined in the input file.

- The real values value_1, value_2, and value_3 are the x, y, and z magnitudes of
the direction vector.

There are two command lines that can be used to define an axis. The first DEFINE AXIS
command line uses two points:

DEFINE AXIS <string>axis_name WITH POINT
<string>point_1 POINT <string>point_2 ,

where

- The string axis_name is a name for this axis. This name must be unique to all
other axes defined in the input file.

- The strings point_1 and point_2 are the names for two points defined in the
input file.

The second DEFINE AXIS command line uses a point and a direction:

DEFINE AXIS <string>axis_name WITH POINT
<string>point DIRECTION <string>direction .

where

- The string axis_name is a name for this axis. This name must be unique to all
other axes defined in the input file.

- The string point is the name of a point defined in the input file.

- The string direction is the name of a direction defined in the input file.
31

2.2 Materials
BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name

#
Command blocks and command lines for material
models appear in this scope.
#

END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

PROPERTY SPECIFICATION FOR MATERIAL command blocks appear in the domain
scope in the general form shown above. These command blocks are physics independent
in the sense that the information in them can be shared by more than one application. For
example, the PROPERTY SPECIFICATION FOR MATERIAL command blocks contain
density information that can be shared among several applications.

The command block begins with the input line

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name

and is terminated with the input line

END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name] ,

where the string mat_name is a user-specified name for the command block.

Within a PROPERTY SPECIFICATION FOR MATERIAL command block, there will be
other command blocks and command lines that describe particular material models. These
material models are described by a set of material-model command blocks that follow the
naming convention of PARAMETERS FOR MODEL model_name, where model_name
identifies the particular material model. Each such command block contains all of the
parameters needed to describe a particular material model. NOTE: More than one
material-model command block can appear within a PROPERTY SPECIFICATION FOR
MATERIAL command block. Suppose we have a PROPERTY SPECIFICATION FOR
MATERIAL command block called steel. It would be possible to have two material-
model command blocks within this command block. One of the material-model command
blocks would provide an elastic model for steel; the other material-mode command
block would provide an elastic-plastic model for steel.

Both PROPERTY SPECIFICATION FOR MATERIAL command blocks and material-
model command blocks are referenced by the element-block command block (also known
as the FINITE ELEMENT MODEL command block), which is described in Section 2.3.

For information about the elastic, elastic-plastic, and elastic-plastic power-law hardening
material models, consult Reference 5. For information about the orthotropic crush model,
consult Reference 6. For information about the energy-dependent models (Mie-Gruneisen,
Mie-Gruneisen power series, JWL, ideal gas), consult Reference 7.

For information about the soil and crushable foam model, consult with the Pronto3d
document listed as Reference 8. The soil and crushable foam model in Presto is the same
as the soil and crushable foam model in Pronto3d. The Pronto3d model is based on a
32

material model developed by Krieg [9]. The Krieg version of the soil and crushable foam
model was later modified by Swenson and Taylor [10]. The soil and crushable foam model
developed by Swenson and Taylor is the model in both Pronto3d and Presto.

For information about the foam plasticity model and orthotropic rate model, contact
William Scherzinger at Sandia National Laboratories in Albuquerque, NM. His phone
number is 505-284-4866, and his email address is wmscher@sandia.gov.

The material models that are most useful in Presto are described in Section 2.2.1 through
Section 2.2.11. These models do not constitute the entire set of material models that are
implemented in the SIERRA Framework. There are material models implemented in the
SIERRA Framework that are useful for other solid mechanics codes, but not for Presto.

You should also be aware that not all of the material models available are applicable to all
of the element types. As one example, there is a one-dimensional elastic material model
that is used for a truss element but is not applicable to solid elements such as hexahedra or
tetrahedra. For this particular example, the specific material-model usage is hidden from
the user. If the user specifies a linear-elastic material model for a truss, the one-
dimensional elastic material model is used. If the user specifies a linear-elastic material
model for a hexahedron, a full three-dimensional elastic material model is used. As
another example, the energy-dependent material models cannot be used for a one-
dimensional element such as a truss. The energy-dependent material models can only be
used for solid elements such as hexahedra and tetrahedra.

For each material model, the parameters needed to describe that model are listed in the
section pertinent to that particular model. Solid models with elastic constants require only
two elastic constants. These two constants are then used to generate all of the elastic
constants for the model. For example, if the user specifies Young’s modulus and Poisson’s
ratio, then the shear modulus, bulk modulus, and lambda are calculated. If the shear
modulus and lambda are specified, then Young’s modulus, Poisson’s ratio, and the bulk
modulus are calculated.

2.2.1 Elastic Model
BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name

DENSITY = <real>density_value
BEGIN PARAMETERS FOR MODEL ELASTIC

YOUNGS MODULUS = <real>youngs_modulus
POISSONS RATIO = <real>poissons_ratio
SHEAR MODULUS = <real>shear_modulus
BULK MODULUS = <real>bulk_modulus
LAMBDA = <real>lambda

END [PARAMETERS FOR MODEL ELASTIC]
END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

An elastic material model is used to describe simple linear-elastic behavior of materials.
This model is generally valid for small deformations.

For an elastic material, an elastic command block starts with the input line
33

BEGIN PARAMETERS FOR MODEL ELASTIC

and terminates with the input line

END [PARAMETERS FOR MODEL ELASTIC] .

In the above command blocks:

- Density is defined with the DENSITY command line.

- Young’s modulus is defined with the YOUNGS MODULUS command line.

- Poisson’s ratio is defined with the POISSONS RATIO command line.

- The bulk modulus is defined with the BULK MODULUS command line.

- The shear modulus is defined with the SHEAR MODULUS command line.

- Lambda is defined with the LAMBDA command line.

Only two of the elastic constants are required.

2.2.2 Elastic-Plastic Model
BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name

DENSITY = <real>density_value
BEGIN PARAMETERS FOR MODEL ELASTIC_PLASTIC

YOUNGS MODULUS = <real>youngs_modulus
POISSONS RATIO = <real>poissons_ratio
SHEAR MODULUS = <real>shear_modulus
BULK MODULUS = <real>bulk_modulus
LAMBDA = <real>lambda
YIELD STRESS = <real>yield_stress
HARDENING MODULUS = <real>hardening_modulus
BETA = <real>beta_parameter(1.0)

END [PARAMETERS FOR MODEL ELASTIC_PLASTIC]
END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

The elastic-plastic linear hardening models are used to model materials, generally metals,
undergoing plastic deformation at finite strains. Linear hardening generally refers to the
shape of a uniaxial stress-strain curve where the stress increases linearly with the plastic,
or permanent, strain. In a three-dimensional framework, hardening is the law that governs
how the yield surface grows in stress space. If the yield surface grows uniformly in stress
space, the hardening is referred to as isotropic hardening. When BETA is 1.0, we have only
isotropic hardening.

Because the linear hardening model is relatively simple to integrate, there is also the
ability to define a yield surface that not only grows, or hardens, but also moves in stress
space. This is known as kinematic hardening. When BETA is 0.0, we have only kinematic
hardening. The elastic-plastic linear hardening model allows for isotropic hardening,
kinematic hardening, or a combination of the two.

For an elastic-plastic material, an elastic-plastic command block starts with the input line

BEGIN PARAMETERS FOR MODEL ELASTIC_PLASTIC
34

and terminates with the input line

END [PARAMETERS FOR MODEL ELASTIC_PLASTIC] .

In the above command blocks:

- Density is defined with the DENSITY command line.

- Young’s modulus is defined with the YOUNGS MODULUS command line.

- Poisson’s ratio is defined with the POISSONS RATIO command line.

- The bulk modulus is defined with the BULK MODULUS command line.

- The shear modulus is defined with the SHEAR MODULUS command line.

- Lambda is defined with the LAMBDA command line.

- The yield stress is defined with the YIELD STRESS command line.

- The hardening modulus is defined with the HARDENING MODULUS command line.

- The beta parameter is defined with the BETA command line.

Only two of the elastic constants are required.

2.2.3 Elastic-Plastic Power-Law Hardening Model
BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name

DENSITY = <real>density_value
BEGIN PARAMETERS FOR MODEL EP_POWER_HARD

YOUNGS MODULUS = <real>youngs_modulus
POISSONS RATIO = <real>poissons_ratio
SHEAR MODULUS = <real>shear_modulus
BULK MODULUS = <real>bulk_modulus
LAMBDA = <real>lambda
YIELD STRESS = <real>yield_stress
HARDENING CONSTANT = <real>hardening_constant
HARDENING EXPONENT = <real>hardening_exponent
LUDERS STRAIN = <real>luders_strain

END [PARAMETERS FOR MODEL EP_POWER_HARD]
END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

A power-law hardening model for elastic-plastic materials is used for modeling metal
plasticity up to finite strains. The power-law hardening model, as opposed to the linear
hardening model, has a power law fit for the uniaxial stress-strain curve that has the stress
increase as the plastic strain raised to a power. The power-law hardening model also has
the ability to model materials that exhibit Luder’s strains after yield. Due to the more
complicated yield behavior, the power-law hardening model can only be used with
isotropic hardening.

For an elastic-plastic power-law hardening material, an elastic-plastic power-law
hardening command block starts with the input line

BEGIN PARAMETERS FOR MODEL EP_POWER_HARD
35

and terminates with the input line

END [PARAMETERS FOR MODEL EP_POWER_HARD] .

In the above command blocks:

- Density is defined with the DENSITY command line.

- Young’s modulus is defined with the YOUNGS MODULUS command line.

- Poisson’s ratio is defined with the POISSONS RATIO command line.

- The bulk modulus is defined with the BULK MODULUS command line.

- The shear modulus is defined with the SHEAR MODULUS command line.

- Lambda is defined with the LAMBDA command line.

- The yield stress is defined with the YIELD STRESS command line.

- The hardening constant is defined with the HARDENING CONSTANT command line.

- The hardening exponent is defined with the HARDENING EXPONENT command
line.

- The Luder’s strain is defined with the LUDERS STRAIN command line.

Only two of the elastic constants are required.

2.2.4 Soil and Crushable Foam Model
BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name

DENSITY = <real>density_value
BEGIN PARAMETERS FOR MODEL SOIL_FOAM

YOUNGS MODULUS = <real>youngs_modulus
POISSONS RATIO = <real>poissons_ratio
SHEAR MODULUS = <real>shear_modulus
BULK MODULUS = <real>bulk_modulus
LAMBDA = <real>lambda
A0 = <real>const_coeff_yieldsurf
A1 = <real>lin_coeff_yieldsurf
A2 = <real>quad_coeff_yieldsurf
PRESSURE CUTOFF = <real>pressure_cutoff
PRESSURE FUNCTION = <string>function_press_volstrain

END [PARAMETERS FOR MODEL SOIL_FOAM]
END [PROPERTY SPECIFICIATION FOR MATERIAL <string>mat_name]

The soil and crushable foam model is a plasticity model that can be used for modeling soil
or crushable foam. Given the right input, the model is a Drucker-Prager model.

For the soil and crushable foam model, the yield surface is a surface of revolution about
the hydrostat in principal stress space. A planar end cap is assumed for the yield surface so
that the yield surface is closed. The yield stress, , is specified as a polynomial in

pressure, . The yield stress is given as

, (1)

σyd

p

σyd a0 a1 p a2 p+ +=
36

where is positive in compression. The determination of the yield stress from Equation

(1) places severe restrictions on the admissible values of , , and . There are three

valid cases for the yield surface. In the first case, there is an elastic-perfectly plastic
deviatoric response, and the yield surface is a cylinder oriented along the hydrostat in
principal stress space. In this case, is positive, and and are zero. In the second

case, the yield surface is conical. A conical yield surface is obtained by setting to zero

and using appropriate values for and . In the third case, the yield surface has a

parabolic shape. For the parabolic yield surface, all three of the coefficients in Equation
(1) are nonzero. The coefficients are checked to determine that a valid negative tensile-
failure pressure can be derived based on the specified coefficients.

For the case of the cylindrical yield surface (e.g. and), there is no

tensile-failure pressure. For the other two cases, the computed tensile-failure pressure may
be too low. To handle the situations where there is no tensile-failure pressure or the tensile-
failure pressure is too low, a pressure cutoff can be defined. If a pressure cutoff is defined,
the tensile-failure pressure is the larger of the computed tensile-failure pressure and the
defined cutoff pressure.

The plasticity theories for the volumetric and deviatoric parts of the material response are
completely uncoupled. The volumetric response is computed first. The mean pressure is

assumed to be positive in compression, and a yield function is written for the

volumetric response as

, (2)

where defines the volumetric stress-strain curve for the pressure. The yield

function determines the motion of the end cap along the hydrostat.

For a soil and crushable foam material, a soil and crushable foam command block starts
with the input line

BEGIN PARAMETERS FOR MODEL SOIL_FOAM

and terminates with the input line

END [PARAMETERS FOR MODEL SOIL_FOAM] .

In the above command blocks:

- Density is defined with the DENSITY command line.

- Young’s modulus is defined with the YOUNGS MODULUS command line.

- Poisson’s ratio is defined with the POISSONS RATIO command line.

- The bulk modulus is defined with the BULK MODULUS command line.

p

a0 a1 a2

a0 a1 a2

a2

a0 a1

a0 0> a1 a2 0= =

p

φp

φp p f p εV()–=

f p εV()

φp
37

- The shear modulus is defined with the SHEAR MODULUS command line.

- Lambda is defined with the LAMBDA command line.

- The constant in the equation for the yield surface is defined with the A0 command
line.

- The coefficient for the linear term in the equation for the yield surface is defined
with the A1 command line.

- The coefficient for the quadratic term in the equation for the yield surface is defined
with the A2 command line.

- The user-defined tensile-failure pressure is defined with the PRESSURE CUTOFF
command line.

- The pressure as a function of volumetric strain is defined with the function named
on the PRESSURE FUNCTION command line.

Only two of the elastic constants are required.

2.2.5 Foam Plasticity Model
BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name

DENSITY = <real>density_value
BEGIN PARAMETERS FOR MODEL FOAM_PLASTICITY

YOUNGS MODULUS = <real>youngs_modulus
POISSONS RATIO = <real>poissons_ratio
SHEAR MODULUS = <real>shear_modulus
BULK MODULUS = <real>bulk_modulus
LAMBDA = <real>lambda
PHI = <real>phi
SHEAR STRENGTH = <real>shear_strength
SHEAR HARDENING = <real>shear_hardening
SHEAR EXPONENT = <real>shear_exponent
HYDRO STRENGTH = <real>hydro_strength
HYDRO HARDENING = <real>hydro_hardening
HYDRO EXPONENT = <real>hydro_exponent
BETA = <real>beta

END [PARAMETERS FOR MODEL FOAM_PLASTICITY]
END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

The foam plasticity model was developed to describe the response of porous elastic-plastic
materials like closed-cell polyurethane foam to large deformation. Like solid metals, these
foams can exhibit significant plastic deviatoric strains (permanent shape changes). Unlike
metals, these foams can also exhibit significant plastic volume strains (permanent volume
changes). The foam plasticity model is characterized by an initial yield surface that is an
ellipsoid about the hydrostat.

When foams are compressed, they typically exhibit an initial elastic regime followed by a
plateau regime in which the stress needed to compress the foam remains nearly constant.
At some point in the compression process the densification regime is reached, and the
stress needed to compress the foam further begins to rapidly increase.
38

The foam plasticity model can be used to describe the response of metal foams and many
closed-cell, polymeric foams to large deformation (including polyurethane, polystyrene
bead, etc.). This model is not appropriate for flexible foams that return to their undeformed
shape after loads are removed.

For a foam plasticity material, a foam plasticity command block starts with the input line

BEGIN PARAMETERS FOR MODEL FOAM_PLASTICITY

and terminates with the input line

END [PARAMETERS FOR MODEL FOAM_PLASTICITY] .

In the above command blocks:

- Density is defined with the DENSITY command line.

- Young’s modulus is defined with the YOUNGS MODULUS command line.

- Poisson’s ratio is defined with the POISSONS RATIO command line.

- The bulk modulus is defined with the BULK MODULUS command line.

- The shear modulus is defined with the SHEAR MODULUS command line.

- Lambda is defined with the LAMBDA command line.

- The initial volume fraction of solid material in the foam, , is defined with the PHI
command line. For example, solid polyurethane weighs 75 pounds per cubic foot
(pcf); uncompressed 10 pcf polyurethane foam would have a of .

- The shear (deviatoric) strength of uncompressed foam is defined with the SHEAR
STRENGTH command line.

- The shear hardening modulus for the foam is defined with the SHEAR HARDENING
command line.

- The shear hardening exponent is defined with the SHEAR EXPONENT command
line. The deviatoric strength is given by SHEAR_STRENGTH +
SHEAR_HARDENING * PHI**SHEAR_EXPONENT.

- The hydrostatic (volumetric) strength of the uncompressed foam is defined with the
HYDRO STRENGTH command line.

- The hydrodynamic hardening modulus for the foam is defined with the HYDRO
HARDENING command line.

- The hydrodynamic hardening exponent for the foam is defined with the HYDRO
EXPONENT command line. The hydrostatic strength is given by HYDRO_STRENGTH
+ HYDRO_HARDENING * PHI**HYDRO_EXPONENT.

- The prescription for nonassociated flow, , is defined with the BETA command line.
When , the flow direction is given by the normal to the yield surface
(associated flow). When , the flow direction is given by the stress tensor.
Values of between 0.0 and 0.95 are recommended.

ϕ

ϕ 0.133 10 75⁄=

β
β 0.0=

β 1.0=
β

39

Only two of the elastic constants are required.

2.2.6 Orthotropic Crush Model
BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name

DENSITY = <real>density_value
BEGIN PARAMETERS FOR MODEL ORTHOTROPIC_CRUSH

YOUNGS MODULUS = <real>youngs_modulus
POISSONS RATIO = <real>poissons_ratio
SHEAR MODULUS = <real>shear_modulus
BULK MODULUS = <real>bulk_modulus
LAMBDA = <real>lambda
YIELD STRESS = <real>yield_stress
EX = <real>modulus_x
EY = <real>modulus_y
EZ = <real>modulus_z
GXY = <real>shear_modulus_xy
GYZ = <real>shear_modulus_yz
GZX = <real>shear_modulus_zx
VMIN = <real>min_crush_volume
CRUSH XX = <string>stress_volume_xx_function_name
CRUSH YY = <string>stress_volume_yy_function_name
CRUSH ZZ = <string>stress_volume_zz_function_name
CRUSH XY = <string>shear_stress_volume_xy_function_name
CRUSH YZ = <string>shear_stress_volume_yz_function_name
CRUSH ZX = <string>shear_stress_volume_zx_function_name

END [PARAMETERS FOR MODEL ORTHOTROPIC_CRUSH]
END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

The orthotropic crush model is an empirically based constitutive relation that is useful for
modeling materials like metallic honeycomb and wood. This particular implementation
follows the formulation of the metallic honeycomb model in DYNA3D [6]. The
orthotropic crush model divides material behavior into three phases:

• orthotropic elastic,

• volumetric crush (partially compacted), and

• elastic-perfectly plastic (fully compacted).

For an orthotropic crush material, an orthotropic crush command block starts with the
input line

BEGIN PARAMETERS FOR MODEL ORTHOTROPIC_CRUSH

and terminates with the input line

END [PARAMETERS FOR MODEL ORTHOTROPIC_CRUSH] .

In the above command blocks:

- The uncompacted density is defined with the DENSITY command line.

- Young’s modulus for the fully compacted state is defined with the YOUNGS
MODULUS command line. This is the elastic-perfectly plastic value of Young’s
modulus.
40

- Poisson’s ratio for the fully compacted state is defined with the POISSONS RATIO
command line. This is the elastic-perfectly plastic value of Poisson’s ratio.

- The bulk modulus is defined with the BULK MODULUS command line.

- The shear modulus is defined with the SHEAR MODULUS command line.

- Lambda is defined with the LAMBDA command line.

- The yield stress for the fully compacted state is defined with the YIELD STRESS
command line. This is the elastic-perfectly plastic value of the yield stress.

- The initial directional modulus is defined with the EX command line.

- The initial directional modulus is defined with the EY command line.

- The initial directional modulus is defined with the EZ command line.

- The initial directional shear modulus is defined with the EXY command line.

- The initial directional shear modulus is defined with the EYZ command line.

- The initial directional shear modulus is defined with the EZX command line.

- The minimum crush volume as a fraction of the original volume is defined with the
VMIN command line.

- The directional stress as a function of the volume crush is defined by the

function referenced in the CRUSH XX command line.

- The directional stress as a function of the volume crush is defined by the

function referenced in the CRUSH YY command line.

- The directional stress as a function of the volume crush is defined by the

function referenced in the CRUSH ZZ command line.

- The directional stress as a function of the volume crush is defined by the

function referenced in the CRUSH XY command line.

- The directional stress as a function of the volume crush is defined by the

function referenced in the CRUSH YZ command line.

- The directional stress as a function of the volume crush is defined by the

function referenced in the CRUSH ZX command line.

Only two of the elastic constants are required. Note that several of the command lines in
this command block (those beginning with CRUSH) reference functions. These functions
must be defined in the domain scope.

Exx

Eyy

Ezz

Gxy

Gyz

Gzx

σxx

σyy

σzz

σxy

σyz

σzx
41

2.2.7 Orthotropic Rate Model
BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name

DENSITY = <real>density_value
BEGIN PARAMETERS FOR MODEL ORTHOTROPIC_RATE

YOUNGS MODULUS = <real>youngs_modulus
POISSONS RATIO = <real>poissons_ratio
SHEAR MODULUS = <real>shear_modulus
BULK MODULUS = <real>bulk_modulus
LAMBDA = <real>lambda
YIELD STRESS = <real>yield_stress
MODULUS TTTT = <real>modulus_tttt
MODULUS TTLL = <real>modulus_ttll
MODULUS TTWW = <real>modulus_ttww
MODULUS LLLL = <real>modulus_llll
MODULUS LLWW = <real>modulus_llww
MODULUS WWWW = <real>modulus_wwww
MODULUS TLTL = <real>modulus_tltl
MODULUS LWLW = <real>modulus_lwlw
MODULUS WTWT = <real>modulus_wtwt
TX = <real>tx
TY = <real>ty
TZ = <real>tz
LX = <real>lx
LY = <real>ly
LZ = <real>lz
MODULUS FUNCTION = <string>modulus_function_name
RATE FUNCTION = <string>rate_function_name
T FUNCTION = <string>t_function_name
L FUNCTION = <string>l_function_name
W FUNCTION = <string>w_function_name
TL FUNCTION = <string>tl_function_name
LW FUNCTION = <string>lw_function_name
WT FUNCTION = <string>wt_function_name

END [PARAMETERS FOR MODEL ORTHOTROPIC_RATE]
END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

Orthotropic rate is a new and improved version of the orthotropic crush constitutive
model. This model has been developed to describe the behavior of an aluminum
honeycomb subjected to large deformation. The new orthotropic rate model, like the
original orthotropic crush model, has six independent yield functions that evolve with
volume strain. Unlike the original model, this new model has yield functions that also
depend on strain rate. The new model also uses an orthotropic elasticity tensor with nine
elastic moduli in place of the orthotropic elasticity tensor with six elastic moduli used in
the original orthotropic crush model. A new honeycomb orientation capability has also
been added that allows users to prescribe initial honeycomb orientations that are not
aligned with the original global coordinate system.

For an orthotropic rate material, an orthotropic rate command block starts with the input
line

BEGIN PARAMETERS FOR MODEL ORTHOTROPIC_RATE

and terminates with the input line

END [PARAMETERS FOR MODEL ORTHOTROPIC_RATE] .
42

In the above command blocks:

- Density is defined with the DENSITY command line.

- Young’s modulus for the fully compacted honeycomb is defined with the YOUNGS
MODULUS command line.

- The yield stress for the fully compacted honeycomb is defined with the YIELD
STRESS command line.

- The nine elastic moduli for the orthotropic uncompacted honeycomb are defined
with the MODULUS TTT, MODULUS TTLL, MODULUS TTWW, MODULUS LLLL,
MODULUS LLWW, MODULUS WWWW, MODULUS TLTL, MODULUS LWLW, and
MODULUS WTWT command lines. The T-direction is usually associated with the
generator axis for the honeycomb. The L-direction is in the ribbon plane (plane
defined by flat sheets used in reinforced honeycomb) and orthogonal to the
generator axis. The W-direction is perpendicular to the ribbon plane.

- The components of a vector defining the T-direction of the honeycomb are defined
by the TX, TY, and TZ command lines. The values tx, ty, and tz are components of
a vector in the global coordinate system that define the orientation of the
honeycomb’s T-direction (generator axis).

- The components of a vector defining the L-direction of the honeycomb are defined
by the LX, LY, and LZ command lines. The values lx, ly, and lz are components
of a vector in the global coordinate system that define the orientation of the
honeycomb’s L-direction. Caution: The vectors T and L must be orthogonal.

- The function describing the variation in moduli with compaction is given by the
MODULUS FUNCTION command line. The moduli vary continuously from their
initial orthotropic values to isotropic values when full compaction is obtained.

- The function describing the change in strength with strain rate is given by the RATE
FUNCTION command line. Note that all strengths are scaled with the multiplier
obtained from this function.

- The function describing the T-normal strength of the honeycomb as a function of
compaction is given by the T FUNCTION command line.

- The function describing the L-normal strength of the honeycomb as a function of
compaction is given by the L FUNCTION command line.

- The function describing the W-normal strength of the honeycomb as a function of
compaction is given by the W FUNCTION command line.

- The function describing the TL-normal strength of the honeycomb as a function of
compaction is given by the TL FUNCTION command line.

- The function describing the LW-normal strength of the honeycomb as a function of
compaction is given by the LW FUNCTION command line.

- The function describing the WT-normal strength of the honeycomb as a function of
compaction is given by the WT FUNCTION command line.
43

Only the elastic modulus (Young’s modulus) is required for this model. If two elastic
constants are supplied, the elastic constants will be completed. However, only the elastic
modulus is used in this model. Note that several of the command lines in this command
block reference functions. These functions must be defined in the domain scope.

2.2.8 Mie-Gruneisen Model
BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name

BEGIN PARAMETERS FOR MODEL MIE_GRUNEISEN
RHO_0 = <real>density
C_0 = <real>sound_speed
SHUG = <real>const_shock_velocity
GAMMA_0 = <real>ambient_gruneisen_param
POISSR = <real>poissons_ratio
Y_0 = <real>yield_strength
PMIN = <real>mean_stress(REAL_MAX)

END [PARAMETERS FOR MODEL MIE_GRUNEISEN]
END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

The Mie-Gruneisen material model describes the nonlinear pressure-volume (or
equivalently pressure-density) response of solids or fluids in terms of a reference pressure-
volume curve and deviations from the reference curve in energy space. The reference
curve is taken to be the experimentally determined principal Hugoniot, which is the locus
of end states that can be reached by a shock transition from the ambient state. For details
about this model, see Reference 7.

For Mie-Gruneisen energy-dependent materials, the Mie-Gruneisen command block
begins with the input line

BEGIN PARAMETERS FOR MODEL MIE_GRUNEISEN

and is terminated with the input line

END [PARAMETERS FOR MODEL MIE_GRUNEISEN] .

In the above command blocks:

- The ambient density, , is defined with the RHO_0 command line. The ambient

density is the density at which the mean pressure is zero, not necessarily the initial
density.

- The ambient bulk sound speed, , is defined by the C_0 command line. The

ambient bulk sound speed is also the first constant in the shock-velocity-versus-
particle-velocity relation . (See the following description of the SHUG

command line for the definition of S.)

- The second constant in the shock-velocity-versus-particle-velocity equation, S, is
defined by the in the SHUG command line. The shock-velocity-versus-particle-
velocity relation is . (See the previous description of the C_0

command line for the definition of .)

ρ0

c0

D c0 Su+=

D c0 Su+=

c0
44

- The ambient gruneisen parameter, , is defined by the GAMMA_0 command line.

- Poisson’s ratio, , is defined by the POISSR command line. Poisson’s ratio is
assumed constant.

- The yield strength, , is defined by the Y_0 command line. The yield strength is

zero for the hydrodynamic case.

- The fracture stress is defined by the PMIN command line. The fracture stress is a
mean stress or pressure, so it must be negative or zero. This is an optional
parameter; if not specified, the parameter defaults to REAL_MAX (no fracture).

2.2.9 Mie-Gruneisen Power-Series Model
BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name

BEGIN PARAMETERS FOR MODEL MIE_GRUNEISEN_POWER_SERIES
RHO_0 = <real>density
C_0 = <real>sound_speed
K1 = <real>power_series_coeff1
K2 = <real>power_series_coeff2
K3 = <real>power_series_coeff3
K4 = <real>power_series_coeff4
K5 = <real>power_series_coeff5
GAMMA_0 = <real>ambient_gruneisen_param
POISSR = <real>poissons_ratio
Y_0 = <real>yield strength
PMIN = <real>mean_stress(REAL_MAX)

END [PARAMETERS FOR MODEL MIE_GRUNEISEN_POWER_SERIES]
END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

The Mie-Gruneisen power-series model describes the nonlinear pressure-volume (or
equivalently pressure-density) response of solids or fluids in terms of a reference pressure-
volume curve and deviations from the reference curve in energy space. The reference
curve is taken to be the experimentally determined principal Hugoniot, which is the locus
of end states that can be reached by a shock transition from the ambient state. The Mie-
Gruneisen power-series model is very similar to the Mie-Gruneisen model, except that the
Mie-Gruneisen model bases the Hugoniot pressure-volume response on the assumption of
a linear shock-velocity-versus-particle-velocity relation, while the Mie-Gruneisen power-
series model uses a power-series expression. For details about this model, see Reference 7.

For Mie-Gruneisen power-series energy-dependent materials, the Mie-Gruneisen power-
series command block begins with the input line

BEGIN PARAMETERS FOR MODEL MIE_GRUNEISEN_POWER_SERIES

and is terminated with the input line

END [PARAMETERS FOR MODEL MIE_GRUNEISEN_POWER_SERIES] .

In the above command blocks:

Γ0

ν

y0
45

- The ambient density, , is defined with the RHO_0 command line. The ambient

density is the density at which the mean pressure is zero, not necessarily the initial
density.

- The ambient bulk sound speed, , is defined by the C_0 command line.

- The power-series coefficients , , , , and are defined by the command

lines K1, K2, K3, K4, and K5, respectively. Only the nonzero power-series
coefficients need be input, since coefficients not specified will default to zero.

- The ambient gruneisen parameter, , is defined by the GAMMA_0 command line.

- Poisson’s ratio, , is defined by the POISSR command line. Poisson’s ratio is
assumed constant.

- The yield strength, , is defined by the Y_0 command line. The yield strength is

zero for the hydrodynamic case.

- The fracture stress is defined by the PMIN command line. The fracture stress is a
mean stress or pressure, so it must be negative or zero. This is an optional
parameter; if not specified, the parameter defaults to REAL_MAX (no fracture).

2.2.10 JWL (Jones-Wilkins-Lee) Model
BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name

BEGIN PARAMETERS FOR MODEL JWL
RHO_0 = <real>initial_density
D = <real>detonation_velocity
E_0 = <real>init_chem_energy
A = <real>jwl_const_pressure1
B = <real>jwl_const_pressure2
R1 = <real>jwl_const_nondim1
R2 = <real>jwl_const_nondim2
OMEGA = <real>jwl_const_nondim3
XDET = <real>x_detonation_point
YDET = <real>y_detonation_point
ZDET = <real>z_detonation_point
TDET = <real>time_of_detonation
B5 = <real>burn_width_const(2.5)

END [PARAMETERS FOR MODEL JWL]
END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

The JWL model describes the pressure-volume-energy response of the gaseous detonation
products of HE (High Explosive). For details about this model, see Reference 7.

For JWL energy-dependent materials, the JWL command block begins with the input line

BEGIN PARAMETERS FOR MODEL JWL

and is terminated with the input line

END [PARAMETERS FOR MODEL JWL] .

ρ0

c0

k1 k2 k3 k4 k5

Γ0

ν

y0
46

In the above command blocks:

- The initial density of the unburned explosive, , is given by the RHO_0 command

line.

- The detonation velocity, D, is given by the D command line.

- The initial chemical energy per unit mass in the explosive, , is given by the E_0

command line. Most compilations of JWL parameters give in units of energy

per unit volume, rather than energy per unit mass. Thus, the tabulated value must be
divided by , the initial density of the unburned explosive.

- The JWL constants with units of pressure, A and B, are given by the A and B
command lines, respectively.

- The dimensionless JWL constants, , , and , are given by the R1, R2, and

OMEGA command lines, respectively.

- The x-coordinate of the detonation point, , is given by the XDET command line.

- The y-coordinate of the detonation point, , is given by the YDET command line.

- The z-coordinate of the detonation point, , is given by the ZDET command line.

- The time of detonation, , is given by the TDET command line.

- The burn-width constant, , is given by the B5 command line. The burn-width

constant has a default value of 2.5.

2.2.11 Ideal Gas Model
BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name

BEGIN PARAMETERS FOR MODEL IDEAL_GAS
RHO_0 = <real>initial_density
C_0 = <real>initial_sound_speed
GAMMA = <real>ratio_specific_heats

END [PARAMETERS FOR MODEL IDEAL_GAS]
END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

The ideal gas model provides a material description based on the ideal gas law. For details
about this model, see Reference 7.

For ideal gas materials, the ideal gas command block begins with the input line

BEGIN PARAMETERS FOR MODEL IDEAL_GAS

and is terminated with the input line

END [PARAMETERS FOR MODEL IDEAL_GAS] .

In the above command blocks:

ρ0

E0

E0

ρ0

R1 R2 ω

xD

yD

zD

tD

B5
47

- The initial density, , is given by the RHO_0 command line.

- The initial sound speed, , is given by the C_0 command line.

- The ratio of specific heats, , is given by the GAMMA command line.

ρ0

c0

γ

48

2.3 Finite Element Model
BEGIN FINITE ELEMENT MODEL <string>mesh_descriptor

DATABASE NAME = <string>mesh_file_name
DATABASE TYPE = <string>database_type(exodusII)
ALIAS <string>mesh_identifier AS <string>user_name .
BEGIN PARAMETERS FOR BLOCK <string>block_name

#
Command lines that define attributes for
a particular element block appear in this
command block.
#

END [PARAMETERS FOR BLOCK <string>block_name]
END [FINITE ELEMENT MODEL <string>mesh_descriptor]

The Presto input file must contain a description of the mesh file that is to be used for an
analysis. The mesh file is described by a FINITE ELEMENT MODEL command block that
appears in the domain scope.

The command block to describe a mesh file begins with

BEGIN FINITE ELEMENT MODEL <string>mesh_descriptor

and is terminated with

END FINITE ELEMENT MODEL <string>mesh_descriptor ,

where mesh_descriptor is a user-selected name for the mesh.

Nested within the command block are two command lines (DATABASE NAME and
DATABASE TYPE) that give the mesh name and define the type for the mesh file,
respectively. The command line

DATABASE NAME = <string>mesh_file_name ,

gives the name of the mesh file with the string mesh_file_name. If the current mesh file
is in the default directory with the input file and is named job.g, then this command line
would appear as

DATABASE NAME = job.g .

If the mesh file is in some other directory, the command line would have to show the path
to that directory. For parallel runs, the string mesh_file_name is the base name for the
spread of parallel mesh files. For example, for a four-processor run, the actual mesh files
associated with a base name of job.g would be job.g.4.0, job.g.4.1, job.g.4.2,
and job.g.4.3. The database name on the command line would be job.g.

If the mesh file does not use the Exodus II format, you must specify the format for the
mesh file using the command line

DATABASE TYPE = <string>database_type(exodusII) .

Currently, only the Exodus II database is supported by the SIERRA Framework. Other
options will be added in the future.
49

It is possible to associate a user-defined name with some mesh entity. The mesh entity for
Exodus II relies on some type of integer identification. You can relate the integer
identification to some name that is more descriptive by using the ALIAS command line:

ALIAS <string>mesh_identifier AS <string>user_name .

Examples of this association are as follows:

Alias block_1 as Case
Alias block_10 as Fin
Alias block_12 as Nose
Alias surface_1 as Nose_Case_Interface
Alias surface_2 as OuterBoundary

The above examples use the Exodus II naming convention described in Section 1.4.

Within the FINITE ELEMENT MODEL command block, there will be one or more
PARAMETERS FOR BLOCK command blocks, which are also referred to in this document
as element-block command blocks. The finite element model consists of one or more
element blocks. The basic information about the element blocks (number of elements,
topology, connectivity, etc.) is read from a mesh file. The specific element type to be used
by Presto is not in the mesh file. For example, the mesh file may specify a topology such
as a four-node quadrilateral for an element block. If a command line appears in the
command block for this element block that specifies a membrane thickness, then the
element type will be a four-node membrane element. If, on the other hand, a command
line appears in the command block for this element block that specifies a shell thickness,
then the element type will be a four-node shell element. Line commands in the element-
block command block establish the specific element type as opposed to the basic element
topology.

All of the elements within an element-block command block will have the same
mechanics properties. The mechanics properties are set by use of the various command
lines. For example, there is a command line that will let you define the material properties
for the elements in the block. There is a command line that will let you specify hourglass
control parameters for the elements in the block (if these elements use hourglass control).
This command line will overwrite the default hourglass control parameters, and they will
apply only to the elements of this particular element block. All of the command lines that
can be used for the element-block command block are described in Section 2.3.1 through
Section 2.3.11.

The element-block command block begins with the input line

BEGIN PARAMETERS FOR BLOCK <string>block_name

and is terminated with the input line

END [PARAMETERS FOR BLOCK <string>block_name] ,

where block_name is the name assigned to the element block. If the format for the mesh
file is Exodus II, the typical form of block_name is block_integerid, where
integerid is the integer identifier for the block. If the element block is 280, the value of
50

block_name would be block_280. It is also possible to generate an alias identifier for
the element block and use this for the block_name. If block_280 is aliased to AL6061,
then block_name becomes AL6061.

Currently, the elements supported in Presto are as follows:

- Eight-node, uniform-gradient hexahedron: Both a midpoint-increment formulation
[8] and a strongly objective formulation are implemented [11].

- Four-node tetrahedron: Only a strongly objective formulation is implemented.

- Eight-node tetrahedron: This tetrahedral element has nodes at the four vertices and
nodes on the four faces. The eight-node tetrahedron has only a strongly objective
formulation [12].

- Ten-node tetrahedron: Only a strongly objective formulation is implemented.

- Four-node quadrilateral membrane: Both a midpoint-increment formulation and a
strongly objective formulation are implemented. This element is derived from the
Key-Hoff shell formulation [13].

- Four-node quadrilateral shell: This shell uses the Key-Hoff formulation [13]. Both a
midpoint-increment formulation and a strongly objective formulation are
implemented.

- Two-node truss: The two-node truss element carries only a uniform axial stress at
present. This element uses only a linear-elastic material model at present.

- Two-node damper: The two-node damping element computes a damping force
based on the relative velocity of the two nodes along the axis of the element.

2.3.1 Definition of Material Model
MATERIAL <string>material_name
SOLID MECHANICS USE MODEL <string>model_name

The property specification for an element block is done by using the above two command
lines. The property specification references both a PROPERTY SPECIFICATION FOR
MATERIAL command block and a material-model command block, which has the general
form PARAMETERS FOR MODEL model_name . These command blocks are described in
Section 2.2. The PROPERTY SPECIFICATION FOR MATERIAL command block
contains all of the parameters needed to define a material, and is associated with an
element block (PARAMETERS FOR BLOCK command block) by use of the MATERIAL
command line. Some of the material parameters inside the property specification are
grouped on the basis of material models. A material-model command block is associated
with an element block by use of the SOLID MECHANICS USE MODEL command line.

Consider the following example. Suppose there is a PROPERTY SPECIFICATION FOR
MATERIAL command block with a material_name of steel. Embedded within this
command block for steel is a material-model command block for an elastic model of
steel and an elastic-plastic model of steel. Suppose that for the current element block
51

we would like to use the material steel with the elastic model. Then the element-block
command block would contain the input lines

MATERIAL steel
SOLID MECHANICS USE MODEL elastic .

If, on the other hand, we would like to use the material steel with the elastic-plastic
model, the element-block command block would contain the input lines

MATERIAL steel
SOLID MECHANICS USE MODEL elastic_plastic .

The user should remember that not all material types can be used with all element types.

2.3.2 Element Strain Formulation
ELEMENT STRAIN FORMULATION = <string>midpoint|

strongly-objective(midpoint)

Using the ELEMENT STRAIN FORMULATION command line, you can specify either a
midpoint-increment strain formulation (midpoint) or a strongly objective strain
formulation (strongly-objective) for some of the elements. See the general element
description to determine which elements offer both formulations. Consult the element
documentation [11,14] for a description of these two strain formulations.

2.3.3 Linear and Quadratic Bulk Viscosity
LINEAR BULK VISCOSITY =
<real>linear_bulk_viscosity_value(0.06)
QUADRATIC BULK VISCOSITY =
<real>quad_bulk_viscosity_value(1.20)

The linear and quadratic bulk viscosity are set with these two command lines. Consult the
documentation for the elements [14] for a description of the bulk viscosity parameters.

2.3.4 Hourglass Control
HEX HOURGLASS STIFFNESS = <real>hour_glass_stiff_value(0.05)
HEX HOURGLASS VISCOSITY = <real>hour_glass_visc_value(0.0)

The hourglass control for uniform-gradient, eight-node hexahedral elements is set with
these two command lines. Consult the element documentation [14] for a description of the
hourglass parameters.

The hourglass stiffness is the same as the dilatational hourglass parameter, and the
hourglass viscosity is the same as the deviatoric hourglass parameter.

2.3.5 Membrane Scale Thickness
MEMBRANE SCALE THICKNESS = <real>mem_scale_thick_value
52

This command line scales the thickness associated with each membrane element in the
mesh file. Currently, the SIERRA Framework input-output (IO) routines specify a
thickness of 1.0 for all elements with a four-node quadrilateral topology. If the value for
mem_scale_thick_value is set to 0.25, the thickness of the membrane elements in the
element block will be 0.25. Future enhancements to the SIERRA Framework IO routines
will let the user read in a unique thickness for each four-node quadrilateral element in a
block of four-node quadrilateral elements.

If the MEMBRANE SCALE THICKNESS command line appears in an element-block
command block, then the elements in the block must have a four-node quadrilateral
topology.

2.3.6 Control Parameters for Shell Elements
SHELL SCALE THICKNESS = <real>shell_scale_thick_value
SHELL INTEGRATION POINTS =

<integer>number_integration_points(5)
SHELL INTEGRATION SCHEME = <string>GAUSS|LOBATTO|

TRAPEZOID(TRAPEZOID)

The above three command lines all set parameters for shell elements. The command line

SHELL SCALE THICKNESS = <real>shell_scale_thick_value

scales the thickness associated with each shell element in the mesh file. Currently, the
SIERRA Framework IO routines specify a thickness of 1.0 for all elements with a four-
node quadrilateral topology. If the value for shell_scale_thick_value is set to 0.25,
the thickness of the shell elements in the element block will be 0.25. Future enhancements
to the SIERRA Framework IO routines will let the user read in a unique thickness for each
four-node quadrilateral element in a block of four-node quadrilateral elements.

The command line

SHELL INTEGRATION POINTS =
<integer>number_integration_points(5)

specifies the number of integration points to be used through the thickness of the shell.
The actual integration scheme is selected by using the command line

SHELL INTEGRATION SCHEME = <string>GAUSS|LOBATTO|
TRAPEZOID(TRAPEZOID) .

Currently, only the trapezoid integration scheme with five integration points is
implemented. Consult the element documentation [14] for a description of different
integration schemes for shell elements.

If the command lines for shell elements appear in an element-block command block, then
the elements in the block must have a four-node quadrilateral topology.
53

2.3.7 Truss Area
TRUSS AREA = <real>truss_cross_sectional_area

The cross-sectional area for truss elements is specified by the TRUSS AREA command
line. The value truss_cross_sectional_area is the cross-sectional area of the truss
members in the element block. If this command line is used for a block of three-
dimensional, two-node elements, the elements in the block are treated as truss elements.

2.3.8 Damper Area
DAMPER AREA = <real>damper_cross_sectional_area

The cross-sectional area for damper elements is specified by the DAMPER AREA command
line. The value damper_cross_sectional_area is the cross-sectional area of the
dampers in the element block. If this command line is used for a block of three-
dimensional, two-node elements, the elements in the block are treated as damper elements.

The damper area is used only to generate mass associated with the damper element. The
mass is the density for the damper element multiplied by the original volume of the
element (original length multiplied by the damper area).

The force generated by the damper element depends on the relative velocity along the
current direction vector for the damper element. If is a unit normal pointing in the

direction from node 1 to node 2 and and are the velocity vectors at nodes 1 and 2,

respectively, then the force generated by the damper element is

, (3)

where is the damping parameter. Currently, the damping parameter must be specified by
using an elastic material model for the damper element. The value for Young’s modulus in
the elastic material model is used for the damping parameter .

2.3.9 Energy Deposition
DEPOSIT SPECIFIC INTERNAL ENERGY <real>edep [OVER TIME
<real>tdep STARTING AT TIME <real>tinit]

This command line controls the amount of energy deposited from external sources, dQ.
The command line defines the amount, edep, of specific (per unit mass) internal energy to
be deposited in the material. The energy is deposited over time, tdep, beginning at time
tinit. The optional parameters tdep and tinit both default to zero, so the energy will
be deposited instantaneously at time zero if they are not specified. The deposition is
uniform in space, so each element in the block has the same amount, edep, added to its
specific internal energy.

n
v1 v2

Fd ηn v2 v1–()⋅=

η

η

54

This command is applicable only to the energy-dependent material models (Mie-
Gruneisen, Mie-Gruneisen Power-Series, JWL, Ideal Gas), which are described in
Reference 7.

2.3.10 Element Numerical Formulation
ELEMENT NUMERICAL FORMULATION = old | new (old)

For calculation of the critical time step, it is necessary to determine a characteristic length
for each element. In one dimension the correct characteristic element length is obviously
the distance between the two nodes of the element. In higher dimensions this is usually
taken to be the minimum distance between any of the nodes in the element. However,
some finite element codes, primarily those based on Pronto3D [8], use as a characteristic
length an eigenvalue estimate based on work by Flanagan and Belytschko [15]. That
characteristic length provides a stable time step, but in many cases is far more conservative
than the minimum distance between nodes. For a cubic element with side length equal to
1, and thus also surface area of each face and volume equal to 1, the minimum distance

between nodes is 1. However, the eigenvalue estimate is , which is only 58% of the
minimum distance. As the length of the element is increased in one direction while
keeping surfaces in the lateral direction squares of area 1, the eigenvalue estimate

asymptotes to for very long elements. If the length is decreased, the eigenvalue
estimate asymptotes to the minimum distance between nodes for very thin elements. In
this case, the eigenvalue estimate is always more conservative than the minimum distance
between nodes. However, consider an element whose cross section in one direction is not a
square but a trapezoid with one side length much greater than the other. Assume the large
side length is 1 and the other side length is arbitrarily small, . In this case, the minimum

distance between nodes becomes , creating a very small and inefficient time step.
However, the eigenvalue estimate is related to the length across the middle of the
trapezoid, which for the conditions stated is . Since both distances provide stable time
steps, and one or the other can be much larger in various circumstances, the most efficient
calculation is obtained by using the maximum of the two lengths, either the eigenvalue
estimate or the minimum distance between nodes, to determine the time step.

By using the maximum of the lengths, the computed critical time step should be at the
edge of instability, and the TIME STEP SCALE FACTOR command line should be used to
provide a margin of safety. In this case the scale factor for the time step should not be
greater than 0.9, and in some cases it may have to be reduced further. Thus, although the
maximum of the lengths provides a time step that is closer to the critical value and
provides better accuracy and efficiency, you may need to specify a smaller-than-expected
scale factor for stability. For this reason, the choice of which approach to use is left to the
user and is determined by the command line

ELEMENT NUMERICAL FORMULATION = old | new (old) .

1 3⁄

1 2⁄

ε
ε

1 2⁄
55

If the input parameter is old, only the eigenvalue estimate is used; while new means that
the maximum of the two lengths is used. The default is old so that users will have to
specifically choose the new approach and be aware of the scale factor for the time step.

The ELEMENT NUMERICAL FORMULATION command line is applicable to both the
energy-dependent and purely mechanical material models. If this command line is applied
to blocks using energy-dependent materials, only the determination of the characteristic
length is affected. If this command line is applied to an element block with a purely
mechanical model and the old option is used, the Pronto3D-based artificial viscosity, time
step, and eigenvalue estimate will be used in the element calculations. If, however, the new
option is used, the artificial viscosity and time step will be computed from equations
associated with the energy-dependent models. You should consult Reference 7 for further
details about the critical time-step calculations and the use of this command line.

2.3.11 Deactivate All Elements in an Element Block
 DEACTIVATE = <string>code_name

This command line will be implemented in the future.
56

2.4 Presto Region and Procedure
The command blocks and command lines described in Section 2.3 are physics
independent, and they reside in the domain scope. There are also command blocks and
command lines that are Presto specific. These will appear in the region scope. The region
scope must rest inside the procedure scope (see Section 1.1 for more information about
scope). To create the scope for the Presto region and Presto procedure, use the following
commands:

BEGIN PRESTO PROCEDURE <string>presto_procedure_name
#
TIME CONTROL command block
#
BEGIN PRESTO REGION <string>presto_region_name

#
command blocks and command lines that appear in the
region scope
#

END [PRESTO REGION <string>presto_region_name]
END [PRESTO PROCEDURE <string>presto_procedure_name]

Currently, only the TIME CONTROL command block appears within the PRESTO
PROCEDURE command block and outside of the PRESTO REGION command block. These
three command blocks are discussed below. See Section 2.5 through Section 2.15 for
descriptions of the command lines and command blocks that will appear in the PRESTO
REGION command block.

2.4.1 Presto Procedure
The entire time-stepping process, from the initial time to the termination time, is
controlled within the procedure scope defined by the PRESTO PROCEDURE command
block. The command block begins with

BEGIN PRESTO PROCEDURE <string>presto_procedure_name

and is terminated with

END [PRESTO PROCEDURE <string>presto_procedure_name] .

The string presto_procedure_name is the name for the Presto procedure.

2.4.2 Time Control
This section describes the input in Presto for time control of an analysis. The time control
sets the begin and end times for the analysis and also controls incrementing the time step.

2.4.2.1 Command Blocks for Time Control and Time Stepping

BEGIN TIME CONTROL
BEGIN TIME STEPPING BLOCK <string>time_block_name

START TIME = <real>start_time_value
BEGIN PARAMETERS FOR PRESTO REGION <string>region_name
57

#
Time control parameters specific to PRESTO
are set in this command block.
#

END [PARAMETERS FOR PRESTO REGION <string>region_name]
END [TIME STEPPING BLOCK <string>time_block_name]
TERMINATION TIME = <real>termination_time ,

END [TIME CONTROL]

Presto time control resides in a TIME CONTROL command block. The command block
begins with

BEGIN TIME CONTROL

and terminates with

END [TIME CONTROL] .

Within the TIME CONTROL command block, a number of TIME STEPPING BLOCK
command blocks can be defined. Each TIME STEPPING BLOCK command block contains
the time at which the time stepping starts and a number of parameters that set time-related
values for the analysis. Each TIME STEPPING BLOCK command block terminates at the
start time of the following command block. The start times for the TIME STEPPING
BLOCK command blocks must be in increasing order. Otherwise, an error will be generated
by Presto.

In the above input lines, the values are as follows:

- The string time_block_name is a name for the TIME STEPPING BLOCK
command block. This name must be unique to the other command blocks of this
type.

- The real value start_time_value is the start time for this TIME STEPPING
BLOCK command block. Values set by the block apply from the start time for this
block until the next start time or the termination time.

- The string region_name is the name of the Presto region affected by the
parameters (see Section 2.4).

The final termination time for the analysis is given by the command line

TERMINATION TIME = <real>termination_time ,

where termination_time is the time at which the analysis will be stopped.

The TERMINATION TIME command line occurs after the last TIME STEPPING BLOCK
command block is defined. Note that it is permissible to have TIME STEPPING BLOCK
command blocks with start times after the termination time; in this case, those command
blocks that have start times after the termination time are not executed. Only one
TERMINATION TIME command line can appear. If more than one of these command lines
appears, Presto gives an error.
58

Nested inside the TIME STEPPING BLOCK command block is a PARAMETERS FOR
PRESTO REGION command block containing parameters that control the time stepping:

BEGIN PARAMETERS FOR PRESTO REGION <string>region_name
INITIAL TIME STEP = <real>initial_time_step_value
TIME STEP SCALE FACTOR = <real>time_step_scale_factor
TIME STEP INCREASE FACTOR =<real>time_step_increase_factor
STEP INTERVAL = <integer>nsteps

END [PARAMETERS FOR PRESTO REGION <string>region_name] .

These parameters are specific to a Presto analysis.

The command block begins with

BEGIN PARAMETERS FOR PRESTO REGION <string>region_name

and is terminated with

END [PARAMETERS FOR PRESTO REGION <string>region_name] .

As noted previously, the string region_name is the name of the Presto region affected by
the parameters. The command lines nested inside the PARAMETERS FOR PRESTO
REGION command block are described next.

2.4.2.2 Initial Time Step

INITIAL TIME STEP = <real>initial_time_step_value

By default, Presto computes a critical time step for the analysis and uses this as the initial
time step. To directly specify a different initial time step, use the INITIAL TIME STEP
command line, where initial_time_step_value is the size of the initial time step.
This command is only valid if it is in the first TIME STEPPING BLOCK command block in
the problem.

The value for the initial time step will overwrite the calculated critical time step. If the
user specifies an initial time step larger than the critical time step, the problem can become
unstable.

2.4.2.3 Time Step Scale Factor

TIME STEP SCALE FACTOR = <real>time_step_scale_factor(1.0)

During the element computations, Presto computes a minimum time step required for
stability of the computation (the critical time step). Using the TIME STEP SCALE
FACTOR command line, you can provide a scale factor to modify the critical time step.
Note that a value greater than 1.0 for time_step_scale_factor will cause the time
step to be greater than the computed critical time step, and thus the problem will likely go
unstable. By default, the scale factor is 1.0.

2.4.2.4 Time Step Increase Factor

TIME STEP INCREASE FACTOR =
59

<real>time_step_increase_factor(1.1)

During an analysis, the computed critical time step may change as elements deform, are
killed, etc. By using the TIME STEP INCREASE FACTOR command line, you can limit
the amount that the time step can increase between two adjacent time steps. The value
time_step_increase_factor is a factor that multiplies the previous time step. The
current time step can be no larger than the product of the previous time step and the scale
factor.

If the computed time step is greater than the critical time step, Presto uses the computed
limit instead. Note that an increase factor less than 1.0 will cause the time step to
continuously decrease. The default value for this factor is 1.1, i.e., a time step cannot be
more than 1.1 times the previous step.

2.4.2.5 Step Interval

STEP INTERVAL = <integer>nsteps(100)

Presto can output data about the current time step, the current internal and external energy,
and the kinetic energy throughout an analysis. The STEP INTERVAL command line
controls the frequency of this output, where nsteps is the number of time steps between
output. The default value for nsteps is 100.

The output at any given step (read from left to right) is

- step number,

- time,

- time increment,

- kinetic energy,

- internal energy,

- external energy (work done on boundary),

- error in energy balance,

- cpu time, and

- wall clock time.

The time is at the current time, step , and the time increment is the previous time step

increment from step to step .

The error in the energy balance is computed from the relation

energy balance error = (kinetic energy + internal energy
 - external energy) / external energy * 100 .

The above expression gives a percent error for the energy balance.

n

n 1– n
60

2.4.2.6 Example

The following is a simple example of a TIME CONTROL command block:

BEGIN TIME CONTROL
BEGIN TIME STEPPING BLOCK p1

START TIME = 0.0
BEGIN PARAMETERS FOR PRESTO REGION presto_region

INITIAL TIME STEP = 1.0e-6
STEP INTERVAL = 50

END
END
BEGIN TIME STEPPING BLOCK p2

START TIME = 0.5e-3
BEGIN PARAMETERS FOR PRESTO REGION presto_region

TIME STEP SCALE FACTOR = 0.9
TIME STEP INCREASE FACTOR = 1.5
STEP INTERVAL = 10

END
END
TERMINATION TIME = 1.0e-3

END

2.4.3 Presto Region

Individual time steps are controlled within the region scope. The region scope is defined
by a PRESTO REGION command block that begins with

BEGIN PRESTO REGION <string>presto_region_name

and is terminated with

END [PRESTO REGION <string>presto_region_name] .

The string presto_region_name is the name for the Presto region.
61

2.5 Use Finite Element Model
The model specification occurs within the region scope. To specify the model (finite
element mesh), use the command line

USE FINITE ELEMENT MODEL <string>model_name .

The string model_name must match a name used in a FINITE ELEMENT MODEL
command block described in Section 2.3. If one of these command blocks uses the name
penetrator in the command-block line and this is the model we wish to use in the
region, then we would enter the command line as

USE FINITE ELEMENT MODEL penetrator .
62

2.6 Kinematic Boundary Conditions
The various kinematic boundary conditions available in Presto are described in this
section. The kinematic boundary conditions are nested inside the region scope.

2.6.1 Fixed Displacement Components
BEGIN FIXED DISPLACEMENT

SURFACE = <string list>surface_names |
 NODE SET = <string list>nodelist_names

COMPONENTS = <string>X/Y/Z
END [FIXED DISPLACEMENT]

The FIXED DISPLACEMENT command block fixes displacement components (X, Y, Z, or
some combination thereof) for a set of nodes for all time. The nodes can be specified with
either a SURFACE or NODE SET command line, but not both. Multiple surfaces or node
sets can be listed within a single SURFACE or NODE SET command line.

The displacement components that are to be fixed are specified with the COMPONENTS
command line.

2.6.2 Prescribed Displacement
BEGIN PRESCRIBED DISPLACEMENT

SURFACE = <string list>surface_names |
NODE SET = <string list>nodelist_names

DIRECTION = <string>defined_direction |
COMPONENT = <string>X|Y|Z

FUNCTION = <string>function_name
SCALE FACTOR = <real>scale_factor(1.0)

END [PRESCRIBED DISPLACEMENT]

The PRESCRIBED DISPLACEMENT command block prescribes a time history
displacement (using a function) for a given set of nodes. The nodes can be specified with
either a SURFACE or NODE SET command line, but not both. Multiple surfaces or node
sets can be listed within a single SURFACE or NODE SET command line.

The time history displacement can be specified either along a component direction (X, Y,
or Z) or in some arbitrary direction, but not both. The COMPONENT command line is used
to specify that the displacement vector lies along one of the component directions, and the
DIRECTION command line is used to specify that the displacement vector lies along an
arbitrary direction. The direction option uses a defined_direction that has been
defined in the domain scope.

The time history function is specified with the FUNCTION command line. This references
a function_name (defined in the domain scope) that specifies the magnitude of the
displacement vector as a function of time.

The displacement values in the function can be scaled by using the SCALE FACTOR
command line. If the magnitude of the displacement in the time history function is given
63

as 1.5 from time 1.0 to time 2.0 and the scale factor is 0.5, then the magnitude of the
displacement from time 1.0 to 2.0 is 0.75. The default value for the scale factor is 1.0.

This boundary condition specifies the displacement only in the prescribed direction. It
does not influence the displacement normal to the prescribed direction.

2.6.3 Prescribed Velocity
BEGIN PRESCRIBED VELOCITY

SURFACE = <string list>surface_names |
NODE SET = <string list>nodelist_names

DIRECTION = <string>defined_direction |
COMPONENT = <string>X|Y|Z |
CYLINDRICAL AXIS = <string>defined_axis |
RADIAL AXIS = <string>defined_axis

FUNCTION = <string>function_name
SCALE FACTOR = <real>scale_factor(1.0)

END [PRESCRIBED VELOCITY]

The PRESCRIBED VELOCITY command block prescribes a time history velocity (using a
function) for a given set of nodes. The nodes can be specified with either a SURFACE or
NODE SET command line, but not both. Multiple surfaces or node sets can be listed within
a single SURFACE or NODE SET command line.

The time history displacement can be specified either along a component direction (X, Y,
or Z), in some arbitrary direction, along a radial direction (defined in reference to some
axis), or along a cylindrical direction (defined in reference to some axis). Only one of
these options is allowed. The COMPONENT command line is used to specify that the
velocity vector lies along one of the component directions, and the DIRECTION command
line is used to specify that the velocity vector lies along an arbitrary direction. The
direction option uses a defined_direction that has been defined in the domain scope.
The CYLINDRICAL AXIS command line requires an axis definition that appears in the
domain scope. For this option, a radial line will be drawn from a node to the cylindrical
axis. The velocity vector will lie along a path that is tangent to a circle that lies in a plane
normal to the cylindrical axis and has a radius defined by the magnitude of the radial line
from the node to the cylindrical axis. The RADIAL AXIS command line requires an axis
definition that appears in the domain scope. For this option, a radial line is drawn from a
node to the radial axis. The velocity vector lies along this radial line from the node to the
radial axis.

The time history function is specified with the FUNCTION command line. This references
a function_name (defined in the domain scope) that specifies the magnitude of the
velocity as a function of time.

The velocity values in the function can be scaled by using the SCALE FACTOR command
line. If the value of velocity in the time history function is given as 1.5 from time 1.0 to
time 2.0 and the scale factor is 0.5, then the velocity from time 1.0 to 2.0 is 0.75. The
default value for the scale factor is 1.0.
64

This boundary condition specifies the velocity only in the prescribed direction. It does not
influence the velocity normal to the prescribed direction.

2.6.4 Prescribed Acceleration
BEGIN PRESCRIBED ACCELERATION

SURFACE = <string list>surface_names |
NODE SET = <string list>nodelist_names

DIRECTION = <string>defined_direction |
COMPONENT = <string>X|Y|Z

FUNCTION = <string>function_name
SCALE FACTOR = <real>scale_factor(1.0)

END [PRESCRIBED ACCELERATION]

The PRESCRIBED ACCELERATION command block prescribes a time history
acceleration (using a function) for a given set of nodes. The nodes can be specified with
either a SURFACE or NODE SET command line, but not both. Multiple surfaces or node
sets can be listed within a single SURFACE or NODE SET command line.

The time history acceleration can be specified either along a component direction (X, Y, or
Z) or in some arbitrary direction, but not both. The COMPONENT command line is used to
specify that the acceleration vector lies along one of the component directions, and the
DIRECTION command line is used to specify that the acceleration vector lies along an
arbitrary direction. The direction option uses a defined_direction that has been
defined in the domain scope.

The time history function is specified with the FUNCTION command line. This references
a function_name (defined in the domain scope) that specifies the magnitude of the
acceleration vector as a function of time.

The acceleration values in the function can be scaled by using the SCALE FACTOR
command line. If the magnitude of the acceleration in the time history function is given as
1.5 from time 1.0 to time 2.0 and the scale factor is 0.5, then the magnitude of the
acceleration from time 1.0 to 2.0 is 0.75. The default value for the scale factor is 1.0.

This boundary condition specifies the acceleration only in the prescribed direction. It does
not influence the acceleration normal to the prescribed direction.

2.6.5 Fixed Rotation
BEGIN FIXED ROTATION

SURFACE = <string list>surface_names |
NODE SET = <string list>nodelist_names

COMPONENTS = <string>X/Y/Z
END [FIXED ROTATION]

The FIXED ROTATION command block fixes rotation about direction components (X, Y,
Z, or some combination thereof) for a set of nodes for all time. The nodes can be specified
with either a SURFACE or NODE SET command line, but not both. Multiple surfaces or
node sets can be listed within a single SURFACE or NODE SET command line.
65

The rotation components that are to be fixed are specified with the COMPONENTS
command line. The rotation components for the nodes in the surface or node set are fixed
for all time.

2.6.6 Prescribed Rotation
BEGIN PRESCRIBED ROTATION

SURFACE = <string list>surface_names |
NODE SET = <string list>nodelist_names

DIRECTION = <string>defined_direction |
COMPONENT = <string>X|Y|Z

FUNCTION = <string>function_name
SCALE FACTOR = <real>scale_factor(1.0)

END [PRESCRIBED ROTATION]

The PRESCRIBED ROTATION command block prescribes a time history for rotation about
an axis for a given set of nodes. The nodes can be specified with either a SURFACE or
NODE SET command line, but not both. Multiple surfaces or node sets can be listed within
a single SURFACE or NODE SET command line.

The time history rotation can be specified either about a component direction (X, Y, or Z)
or about some arbitrary direction, but not both. The COMPONENT command line is used to
specify that the rotation vector is about one of the component directions, and the
DIRECTION command line is used to specify that the rotation vector is about an arbitrary
direction. The direction option uses a defined_direction that has been defined in the
domain scope.

The time history function is specified with the FUNCTION command line. This references
a function_name (defined in the domain scope) that specifies the magnitude of the
rotation vector as a function of time.

The magnitude of the rotation in the function can be scaled by using the SCALE FACTOR
command line. If the magnitude of the rotation in the time history function is given as 1.5
from time 1.0 to time 2.0 and the scale factor is 0.5, then the magnitude of the rotation
from time 1.0 to 2.0 is 0.75. The default value for the scale factor is 1.0.

The magnitude of the rotation, as specified by the product of the function and the scale
factor, has units of radians per second.
66

2.7 Initial Conditions
An initial velocity can be specified for all nodes associated with a list of element blocks.
This initial velocity condition is imposed with an INITIAL VELOCITY command block,
which has the general form

BEGIN INITIAL VELOCITY
BLOCK = <string list>block_name1 block_name2 ...
velocity specification command lines

END [INITIAL VELOCITY]

The INITIAL VELOCITY command block begins with

BEGIN INITIAL VELOCITY

and is terminated with

END INITIAL VELOCITY .

The element blocks are specified with the BLOCK command line. One or more element
block names can be specified on the BLOCK command line. The velocity specification
applies to all of the element blocks.

There are two different methods for specifying the initial velocity. These two methods are
described in the following sections.

2.7.1 Initial Velocity Direction
BEGIN INITIAL VELOCITY

BLOCK = <string list>block_names
DIRECTION = <string>defined_direction
MAGNITUDE = <real>magnitude_of_velocity

END [INITIAL VELOCITY]

The initial velocity can be specified in a given direction. The direction of the velocity
vector is given by the DIRECTION command line with a defined direction that appears in
the domain scope. The magnitude of the initial velocity is given by the MAGNITUDE
command line with the real value magnitude_of_velocity.

If the direction option is selected for this command block, you must use both the
DIRECTION command line and the MAGNITUDE command line. Neither of the command
lines associated with the angular velocity option (CYLINDRICAL AXIS command line and
ANGULAR VELOCITY command line) can appear in conjunction with the direction option.

2.7.2 Initial Angular Velocity
BEGIN INITIAL VELOCITY

BLOCK = <string list>block_names
CYLINDRICAL AXIS = <string>defined__axis
ANGULAR VELOCITY = <real>angular_velocity

END [INITIAL VELOCITY]
67

The initial velocity can be specified as an initial angular velocity about some axis. The
axis about which the body is initially rotating is given by the CYLINDRICAL AXIS
command line with a defined axis that appears in the domain scope. The magnitude of the
angular velocity about this axis is given by the ANGULAR VELOCITY command line with
the real value angular_velocity.

For the angular velocity option, the angular velocity has units of radians per unit time.
Typically, the value for the angular velocity will be radians per second.

If the angular velocity option is selected for this command block, you must use both the
CYLINDRICAL AXIS command line and the ANGULAR VELOCITY command line.
Neither of the command lines associated with the direction option (DIRECTION command
line and MAGNITUDE command line) can appear in conjunction with the angular velocity
option.
68

2.8 Force Boundary Conditions
There are a variety of force boundary conditions that are available in Presto. This section
describes these boundary conditions.

2.8.1 Pressure
BEGIN PRESSURE

SURFACE = <string list>surface_names
FUNCTION = <string>function_name
SCALE FACTOR = <real>scale_factor(1.0)

END [PRESSURE]

The PRESSURE command block applies a pressure over a list of surfaces specified by the
SURFACE command line. The pressure is in the opposite direction to the outward normals
of the faces that define the surfaces. Currently, the PRESSURE command block can be used
for surfaces that have faces derived from eight-node hexahedrons, four-node tetrahedrons,
eight-node tetrahedrons, four-node membranes, and four-node shells. Only uniform
pressure loads are handled at present. The magnitude of the pressure as a function of time
is given by function_name on the FUNCTION command line. The function
corresponding to function_name is defined in the domain scope. The pressure value is
applied to all of the faces in the given surface.

The value of the pressure in the function can be scaled by using the SCALE FACTOR
command line. If the magnitude of the pressure in the time history function is given as
100.0 from time 1.0 to time 2.0 and the scale factor is 2.5, then the magnitude of the
pressure from time 1.0 to 2.0 is 250.0. The default value for the scale factor is 1.0.

2.8.2 Prescribed Force
BEGIN PRESCRIBED FORCE

SURFACE = <string list>surface_names |
 NODE SET = <string list>nodelist_names

DIRECTION = <string>defined_direction |
COMPONENT = <string>X|Y|Z

FUNCTION = <string>function_name
SCALE FACTOR = <real>scale_factor(1.0)

END [PRESCRIBED FORCE]

The PRESCRIBED FORCE command block prescribes a time history for forces on a given
set of nodes. The nodes can be specified with either a SURFACE or NODE SET command
line, but not both. Multiple surfaces or node sets can be listed within a single SURFACE or
NODE SET command line.

The time-history nodal forces can be specified either along a component direction (X, Y,
or Z) or in some arbitrary direction, but not both. The COMPONENT command line is used
to specify that the force vector lies along one of the component directions, and the
DIRECTION command line is used to specify that the force vector lies along an arbitrary
69

direction. The direction option uses a defined_direction that has been defined in the
domain scope.

The time history function is specified with the FUNCTION command line. This references
a function_name (defined in the domain scope) that specifies the magnitude of the force
vector as a function of time.

The force values in the function can be scaled by using the SCALE FACTOR command
line. If the magnitude of the force in the time history function is given as 100.0 from time
1.0 to time 2.0 and the scale factor is 2.5, then the magnitude of the force from time 1.0 to
2.0 is 250.0. The default value for the scale factor is 1.0.

2.8.3 Prescribed Moment
BEGIN PRESCRIBED MOMENT

SURFACE = <string list>surface_names |
NODE SET = <string list>nodelist_names

DIRECTION = <string>defined_direction |
COMPONENT = <string>X|Y|Z

FUNCTION = <string>function_name
SCALE FACTOR = <real>scale_factor(1.0)

END [PRESCRIBED MOMENT]

The PRESCRIBED MOMENT command block prescribes a time history for a moment about
an axis for a given set of nodes. The nodes can be specified with either a SURFACE or
NODE SET command line, but not both. Multiple surfaces or node sets can be listed within
a single SURFACE or NODE SET command line.

The time history moment can be specified either about a component direction (X, Y, or Z)
or about some arbitrary direction, but not both. The COMPONENT command line is used to
specify that the moment vector is about one of the component directions, and the
DIRECTION command line is used to specify that the moment vector is about an arbitrary
direction. The direction option uses a defined_direction that has been defined in the
domain scope.

The time history function is specified with the FUNCTION command line. This references
a function_name (defined in the domain scope) that specifies the magnitude of the
moment vector as a function of time.

The magnitude of the moment in the function can be scaled by using the SCALE FACTOR
command line. If the magnitude of the rotation in the time history function is given as 1.5
from time 1.0 to time 2.0 and the scale factor is 0.5, then the magnitude of the rotation
from time 1.0 to 2.0 is 0.75. The default value for the scale factor is 1.0.
70

2.9 Specialized Boundary Conditions
There are a number of specialized boundary conditions implemented in Presto. Some of
them enforce kinematic conditions, and some result in the application of loads.

2.9.1 Gravity
BEGIN GRAVITY

DIRECTION = <string>defined_direction
FUNCTION = <string>function_name
SCALE FACTOR = <real>scale_factor(1.0)
GRAVITATIONAL CONSTANT = <real>g_constant

END [GRAVITY]

The GRAVITY command block is used to specify a gravity load that is applied to all
element blocks in the finite element model. The direction of the gravity load is given by a
defined direction on the DIRECTION command line. A gravitational constant is specified
by the GRAVITATIONAL CONSTANT command line. (For example, the gravitational
constant in units of inches and seconds would be 386.4 inches per second squared.) The
strength of the gravitational field as a function of time can be varied by using the
FUNCTION command line. This command line references a function_name defined in
the domain scope. The dependent variables in the function can be scaled by the real value
in the SCALE FACTOR command line. At any given time, the strength of the gravitational
field is a product of the gravitational constant, the value of the function at that time, and
the scale factor.

2.9.2 Cavity Expansion
BEGIN CAVITY EXPANSION

SURFACE = <string>surface_name
EXPANSION RADIUS = <string>spherical|

cylindrical(spherical)
TARGET NORMAL = <string>X|Y|Z
FREE SURFACE = <real>upper_surface <real>lower_surface
LAYER SURFACE = <real>upper_layer <real>lower_layer
FREE SURFACE EFFECT COEFFICIENTS =

<real>free_surf_coeff_top <real>free_surf_coeff_bottom
PRESSURE COEFFICIENTS =

<real>coeff1 <real>coeff2 <real>coeff3
NODE SETS TO DEFINE BODY AXIS =

<string>nodelist_id1 <string>nodelist_id2
TIP RADIUS = <real>tip_radius

END [CAVITY EXPANSION]

The CAVITY EXPANSION command block is used to apply a cavity expansion boundary
condition to a surface on a body. This boundary condition is used for earth penetration
studies where some type of projectile strikes a target. For a more detailed explanation of
the numerical implementation of the cavity expansion boundary condition and the
parameters for this boundary condition, consult Reference 16. The cavity expansion
boundary condition is a complex boundary condition with several options, and the detailed
71

explanation of the implementation of this boundary condition in Reference 16 is required
reading to fully understand the input parameters for this boundary condition.

The boundary condition is applied to a surface (surface_name) specified by the
SURFACE command line. This boundary condition generates a pressure at a node based
on the velocity and surface geometry at the node. Since cavity expansion is essentially a
pressure boundary condition, cavity expansion must be specified for a surface.

There are two types of cavity expansion—cylindrical expansion and spherical expansion.
You can select either the spherical or cylindrical option by using the EXPANSION RADIUS
command line; the default is spherical. Consult References 16 and 17 for more
information about these two types of cavity expansion.

The normal to the target is specified by the TARGET NORMAL command line. The normal
will be in the positive x-direction (TARGET NORMAL = X), the positive y-direction
(TARGET NORMAL = Y), or the positive z-direction (TARGET NORMAL = Z).

The cavity expansion implementation accounts for surface effects. The free surfaces of the
target are specified by the FREE SURFACE command line. The first value on this
command line (upper_surface) defines the upper point on the target, and the second
value (lower_surface) defines the lower point on the target. A layer in the target is
specified with the LAYER SURFACE command line. The first value on this command line
(upper_layer) defines the upper surface of the layer, and the second value on this
command line (lower_layer) defines the lower surface of the layer. For further
information about the layer specification, consult Reference 16.

While the surface depths for the free surface effects are set on the FREE SURFACE
command line, the coefficients for these effects are provided in the FREE SURFACE
EFFECT COEFFICIENTS command line. The first coefficient, free_surf_coeff_top,
is for free surface effects at the top free surface; the second coefficient,
free_surf_coeff_bottom, is for free surface effects at the bottom surface. If a surface
effect coefficient is not zero, then the cavity expansion boundary condition will account
for surface effects. If a surface effect coefficient is zero, then the boundary condition will
NOT account for surface effects. For a detailed discussion of the surface effect
calculations, consult Reference 16.

The value of the pressure at a node is derived from an equation that is quadratic based on
some scalar value derived from the velocity vector at the node. The three coefficients for
the quadratic equation are given by the PRESSURE COEFFICIENTS command line. The
three coefficients (coeff1, coeff2, and coeff3) define the impact properties of the
target. Consult Reference 17 for further information concerning these coefficients.

For the numerical implementation of cavity expansion, it is necessary to define two points
on the axis (usually an axis of revolution) of the penetrator. These points are defined by the
NODE SETS TO DEFINE BODY AXIS command line. The first point should be a node
toward the forward tip of the penetrator (nodelist_id1); the second point should be a
72

node toward the aft end of the penetrator (nodelist_id2). Consult Reference 16 for
more information about how the body axis is defined.

It is necessary to compute either a spherical or cylindrical radius for nodes on the surface
where the cavity expansion boundary condition is applied. This is done automatically for
most nodes. The calculations for these radii break down if the node is close to or at the
axis of revolution of the body. For nodes where the radii calculations break down, a user-
defined radius can be specified with the TIP RADIUS command line. For more
information, consult Reference 16.

2.9.3 Periodic
BEGIN PERIODIC

NODE SETS = <string>nodelist_id1 <string>nodelist_id2 |
SURFACES = <string>surface_id1 <string>surface_id2

SEARCH TOLERANCE = <real>search_tolerance(1.0e-4)
PRESCRIBED QUANTITY = <string>DISPLACEMENT|VELOCITY|FORCE
COMPONENT = <string>X|Y|Z |

RADIAL AXIS = <string>defined_radial_axis
FUNCTION = <string>function_name
SCALE FACTOR = <real>scale_factor(1.0)
THETA = <real>theta_value>

END [PERIODIC]

The PERIODIC command block is used to define boundary conditions for periodic
structures. With the periodic boundary condition, it is possible to define only one segment
of an object that is repeated on a periodic basis in order to model the entire object. Figure
2.1 shows an example of a structure that can be modeled using the periodic boundary
condition. The basic shape, segment n, is repeated throughout the structure. Only this
segment of the structure is actually modeled.

Figure 2.1. Periodic structure.

a b

segment n -1 segment n segment n +1

c

d

73

The boundary condition that is applied to the boundary c of segment n also applies to the
corresponding boundaries of segments 1 through and segments through m,
where . The same is also true for the boundary condition that applies to the
boundary d of segment n. If, for example, a pressure boundary condition is applied to
boundary d of segment n, then the same pressure boundary condition also applies to the
corresponding boundary for all other segments. The boundaries a and b must have self-
similar node sets modeling these boundaries. For example, if boundary a has ten nodes,
these ten nodes must exactly overlay ten nodes on boundary b if the nodes on boundary a
are simply moved by a translation from boundary a to boundary b.

Currently, only a limited set of options is available for the periodic boundary condition in
Presto. Not all of the above options listed on the command lines are functional.
Furthermore, the PERIODIC command block can only be used for serial analyses. This
command block has not yet been implemented for parallel analyses.

The two self-similar node sets for the boundary condition are specified by the NODE SETS
command line. It must be possible to replicate the coordinates for the nodes in one set
(nodelist_id1) by a simple translation of the corresponding nodes in the other set
(nodelist_id2). A geometric check is made to determine if the node sets are self-
similar. The geometric check is set to a certain tolerance. This tolerance can be reset from

a default value of by using the command line SEARCH TOLERANCE. If a node on
boundary a lies within a radius defined by the search tolerance from a node on boundary b,
the two nodes are considered self-similar.

Two self-similar node sets can also be specified by the SURFACES command line. A node
set will be generated from a surface specification. All nodes associated with the specified
surface will constitute the node set. It must be possible to replicate the coordinates for the
nodes in one set (derived from the nodes associated with surface_id1) by a simple
translation of the corresponding nodes in the other set (derived from the nodes associated
with surface_id2). A geometric check is made to determine if the node sets are self-
similar. This check for self-similarity is the same as that for the case of the node set
specification.

You may use either a NODE SETS command line or a SURFACES command line, but not
both. This command block is valid only for two node sets that are self-similar.

The periodic boundary condition forces the motion of two self-similar nodes to be the
same. The motion of any two self-similar nodes must be the same to reflect the periodic
nature of the structure. It is possible to prescribe the behavior for certain quantities on the
self-similar boundaries a and b. The prescribed quantity that will exhibit periodic behavior
on boundaries a and b is specified with the PRESCRIBED QUANTITY command line. At
present, only the DISPLACEMENT option is allowed. This option forces the displacement
component selected by the COMPONENT command line (either X, Y, or Z) to exhibit the
periodic behavior. The prescribed behavior is defined by the FUNCTION command line.
The FUNCTION command line references a function_name described in the domain

n 1– n 1+
m n 1+>

1 10 4–×
74

scope. The function is scaled by the scale_factor given on the the SCALE FACTOR
command line.

Currently, the VELOCITY and FORCE options for the PRESCRIBED QUANTITY command
line are not implemented. The RADIAL AXIS option is not implemented for the
COMPONENT command line. The THETA command line will be used in conjunction with
the RADIAL AXIS option, so it is not currently functional.

2.9.4 Silent Boundary
BEGIN SILENT BOUNDARY

SURFACE = <string>surface_name
END [SILENT BOUNDARY]

The boundary condition defined by the SILENT BOUNDARY command block is also
referred to as a nonreflecting surface boundary condition. A wave striking this surface is
not reflected. This boundary condition is implemented with the techniques described in
Reference 18. The method described in this reference is excellent at transmitting the low-
and medium-frequency content through the boundary. While the method does reflect some
of the high-frequency content, the amount of energy reflected is usually minimal. On the
whole, the silent boundary condition implemented in Presto is highly effective.

To use the SILENT BOUNDARY command block, you only have to specify the surface that
is nonreflective (surface_name) in the SURFACE command line.

2.9.5 Spot-Weld
BEGIN SPOT WELD

NODE SET = <string>nodelist_id
SURFACE = <surface>surface_id
NORMAL DISPLACEMENT FUNCTION =

<string>function_nor_disp
NORMAL DISPLACEMENT SCALE FACTOR =

<real>scale_nor_disp[1.0]
TANGENTIAL DISPLACEMENT FUNCTION =

<string>function_tang_disp
TANGENTIAL DISPLACEMENT SCALE FACTOR =

<real>scale_tang_disp[1.0]
FAILURE ENVELOPE EXPONENT = <real>exponent
FAILURE DECAY CYCLES = <integer>number_decay_cycles

END [SPOT WELD]

The spot-weld option lets the user model an “attachment” between a node on one surface
and a face on another surface. This option models a weld or a small screw or bolt with a
force-displacement curve like that shown in Figure 2.2. The displacement shown in the
figure is the distance that the node moves from the nearest point on the face as measured in
the original configuration. The force shown in the figure is the force at the attachment as a
function of the distance between the two attachment points. (The force-displacement
curve assumes the two attachment points are originally at the same location and the initial
75

distance is zero.) Two force-displacement curves are required for the spot-weld model.
One curve models normal behavior, and the other curve models tangential behavior.

Figure 2.2. Force-displacement curve for spot-weld.

The attachment in Presto is defined between a node on one surface and the closest point on
an element face on the other surface. Since a face is used to define one of the attachment
points, it is possible to compute a normal vector and a tangent vector associated with the
face. This allows us to resolve the displacement (distance) and force into normal and
tangential components. With normal and tangential vectors associated with the
attachment, the attachment can be characterized for the case of pure tension and pure
shear. By specifying another parameter, a failure envelope exponent, we can control the
interaction between the cases of pure tension and pure shear. For the spot-weld model
implemented in Presto, the attachment remains intact as long as

. (4)

In Equation (4), the distance from the node to the original attachment point on the face as
measured normal to the face is , which is defined as the normal distance. The maximum

value given for in the normal force-displacement curve is . The distance from the

node to the original attachment point on the face as measured along a tangent to the face is
, which is defined as the tangential distance. The maximum value given for in the

tangential force-displacement curve is . In Figure 2.2, the maximum value for the

displacement is ucrit.

To use the spot-weld option in Presto, a SPOT WELD command block begins with the input
line

BEGIN SPOT WELD

and is terminated with the input line

END [SPOT WELD] .

Within the command block, it is necessary to specify the node on one surface with the
NODE SET command line. Only one node (nodelist_id) can be in the node set

force

displacement

ucrit

un uncrit
⁄()p ut utcrit

⁄()p 1.0<+

un

un uncrit

ut ut

utcrit
76

specified by the NODE SET command line. An element face (surface_id) on an
opposing surface is specified with the SURFACE command line. Only one element face can
be in the surface specified by the SURFACE command line. When calculating the closest
point on the opposing surface to the node, this closest point should lie within the element
face specified by the SURFACE command line.

The normal force-displacement curve is specified by a function named by the value
function_nor_disp in the NORMAL DISPLACEMENT FUNCTION command line. This
function can be scaled by the real value scale_nor_disp in the NORMAL
DISPLACEMENT SCALE FACTOR command line; the default for this factor is 1.0. The
tangential force-displacement curve is specified by a function named by the string
function_tang_disp in the TANGENTIAL DISPLACEMENT FUNCTION command
line. This function can be scaled by the real value scale_tang_disp given in the
TANGENTIAL DISPLACEMENT SCALE FACTOR command line; the default for this factor
is 1.0.

The failure envelope exponent, in Equation (4), is specified by the real value exponent
in the FAILURE ENVELOPE EXPONENT command line.

For an explicit, transient dynamics code like Presto, it is better to remove the force for the
spot-weld over several load steps rather than over a single load step once the failure
criterion is exceeded. The FAILURE DECAY CYCLES command line controls the number
of load steps over which the final force is removed. To remove the final force at a spot-
weld over five load increments, the integer specified by number_decay_cycles would
be set to 5. Once the force at the spot-weld is reduced to zero, it remains zero for all
subsequent time.

p

77

2.10 Constraints
There are currently two different constraints available in Presto. These constraints
maintain algebraic relations over time between a pair of nodes.

2.10.1 Constant Distance Constraint
BEGIN CONSTRAINT CONSTANT DISTANCE

NODE SETS = <string list>nodelist_id1 nodelist_id2
SEARCH TOLERANCE = <real>search_tol(0.0001)

END [CONSTRAINT CONSTANT DISTANCE]

The CONSTRAINT CONSTANT DISTANCE command block defines a constraint condition
that preserves the distance between two nodes. If the original distance between two nodes
at time 0 is D, the distance between the two nodes will remain D for all time.

Nodes are paired with the NODE SETS command line by specifying two separate node sets
that are self-similar, i.e., one node set (nodelist_id1) will overlay the other node set
(nodelist_id2) if either set is moved by a simple translation. The constraint condition
pairs nodes that lie within a distance (search_tol) specified by the SEARCH
TOLERANCE command line. The default value for search_tol is 0.0001. The constraint
condition will produce an error if the node sets are not self-similar. All paired nodes are
subjected to the distance constraint.

This constraint condition only works for serial runs at present.

2.10.2 Hex Shell Constraint
BEGIN CONSTRAINT HEX SHELL <string>constraint_name

HEX SHELL BLOCK = <string>hexshell_block_id
EXCLUDE SURFACE = <string>surface_id

END [CONSTRAINT HEX SHELL <string>contraint_name]

The CONSTRAINT HEX SHELL command block defines a constraint condition that will
preserve the distance between two nodes that define a through-the-thickness edge of a
hexahedral shell element. For transient dynamics, it is necessary to introduce this
constraint for the hexahedral shell elements. If the original distance between two nodes on
a hexahedral shell that define a through-the-thickness edge at time 0 is D, the distance
between the two nodes will remain D for all time.

If you specify a hexahedral shell block with the command line

HEX SHELL BLOCK = <string>hexshell_block_id ,

then all through-the-thickness edges will be found, and the constraint will be
automatically applied. The algorithm to detect the through-the-thickness edges makes use
of the fact that a block of hexahedral shell elements will be only one element thick.
Ambiguous cases, however, can occur. A single element tab protruding from a block of
elements, for example, generates an ambiguous case. You can eliminate ambiguities by
78

using the EXCLUDE SURFACE command line. Any edges in the defined surface
(surface_id) are excluded from the constraint condition. Note that it is the user’s
responsibility to determine whether there are ambiguous situations in the mesh or other
special cases where the constraint should be eliminated. The user must then set up the
proper surface definitions in the mesh and use these definitions in the CONSTRAINT HEX
SHELL command block.

The hexahedral shell is currently under development and has not been implemented in
Presto.
79

2.11 Mass Property Calculations
It is possible to request initial mass properties for an element block or a group of element
blocks. This is done by using the MASS PROPERTIES command block:

BEGIN MASS PROPERTIES
 BLOCK = <string>block_id1 <string>block_id2 ...
 STRUCTURE NAME = <string>structure_name
END [MASS PROPERTIES] .

If only one element block (block_id1) is specified on the BLOCK command line, only the
mass properties for that block are calculated. If several element blocks are specified on the
BLOCK command line, then that collection of blocks will be treated as one entity, and the
mass properties for that single entity are calculated. If, for example, two element blocks
are listed (block_id1 and block_id2), the total mass for the two element blocks will be
reported as the total mass property.

The MASS PROPERTIES command block reports the total mass for the structure as
defined by the BLOCK command line and the center of mass for the structure in the global
coordinate system X, Y, Z. It also reports the moments of inertia (Ixx, Iyy, Izz, Ixy, Iyz, Izx)
about the center of mass of the structure in terms of the global coordinate system. The
output for the mass properties will be identified by the structure_name specified for
the structure on the STRUCTURE NAME command line.

This command block appears in the region scope.
80

2.12 Contact
This section describes the input syntax for defining interactions of contact surfaces in an
analysis. For more information on contact and its computational details, consult Reference
2.

Within the contact scope, there are command lines and command blocks that define the
specifics for the interaction of surfaces via the contact algorithm. Some of the command
lines and command blocks within the contact scope set up default parameters that affect all
contact calculations. Some of the command blocks in the contact scope affect only the
interaction between a pair of surfaces.

There are three approaches that you can use to define a contact problem: (1) define a set of
parameters that will apply to all contact interactions; (2) define a set of parameters that
will apply to all contact interactions, and then override the defaults for a limited set of
interactions; and (3) define all interactions separately such that each interaction can be
defined by its own set of parameters. Which approach you choose will depend on the level
of detail required to define all of the interactions.

You can have contact enforcement for all surfaces that are defined as contact surfaces or
for only a limited set of surfaces defined as contact surfaces. If you use the DEFAULTS
command block described in Section 2.12.8, all of the surfaces listed as contact surfaces
will be treated as contact surfaces. If you omit the DEFAULTS command block, only those
surfaces appearing in the INTERACTION command blocks described in Section 2.12.9 will
be treated as contact surfaces.

The general pattern of syntax for describing contact is as follows:

- Identify all surfaces that need to be considered for contact. This is done with
command lines within the contact scope.

- Specify any special contact options such as initial overlap removal, angle for
multiple interactions, and number of enforcement iterations. This is done with
command lines within the contact scope.

- Describe friction models used in the contacts for this analysis. Current types of
friction models include frictionless contact, contact with constant coulomb friction,
and tied contact. A friction model is described with a command block.

- Specify any rigid surface used for contact. Rigid surfaces are described with a
command block.

- Set default values. Default values that apply to all of the surfaces interactions are
specified in a command block. A normal tolerance and tangential tolerance are
required input. The overlap removal tolerances and the default friction model can
be set in the DEFAULTS command block. Automatic kinematic partitioning can be
set as a global option in the DEFAULTS command block.

- Specify values for interactions between specific contact surfaces. This is done
within a command block. Values specified in this command block can override
81

defaults for the normal and tangential tolerances, the friction model, and the
kinematic partition factors.

2.12.1 Contact Definition Block
All commands for contact occur within a CONTACT DEFINITION command block. A
summary of these commands follows.

BEGIN CONTACT DEFINITION <string>block_name
CONTACT SURFACE <string>name

CONTAINS <string list>surfaces
CONTACT ALL BLOCKS
REMOVE INITIAL OVERLAP
MULTIPLE INTERACTIONS WITH ANGLE

<real>angle(60.0)
NUMBER OF ITERATIONS

<integer>number_enforce_iter(5)
BEGIN FRICTIONLESS MODEL <string>name
END [FRICTIONLESS MODEL <string>name]
BEGIN CONSTANT FRICTION MODEL <string>name

FRICTION COEFFICIENT = <real>coeff
END [CONTACT FRICTION MODEL <string>name]
BEGIN TIED MODEL <string>name
END [TIED MODEL <string>name]
BEGIN ANALYTIC PLANE [<string>name]

NORMAL = <string>defined_direction
POINT = <string>defined_point

END [ANALYTIC PLANE <string>name]
BEGIN ANALYTIC CYLINDER [<string>name]

CENTER = <string>defined_point
AXIAL DIRECTION = <string>defined_axis
RADIUS = <real>cylinder_radius
LENGTH = <real>cylinder_length
CONTACT NORMAL = <string>OUTSIDE|INSIDE

END [ANALYTIC CYLINDER <string>name]
BEGIN ANALYTIC SPHERE [<string>name]

CENTER = <string>defined_point
RADIUS = <real>sphere_radius

END [ANALYTIC SPHERE <string>name]
BEGIN DEFAULTS [<string>name]

NORMAL TOLERANCE = <real>norm_tol
TANGENTIAL TOLERANCE = <real>tang_tol
OVERLAP NORMAL TOLERANCE = <real>norm_tol
OVERLAP TANGENTIAL TOLERANCE = <real>tang_tol
FRICTION MODEL = <string>name
AUTOMATIC KINEMATIC PARTITION

END [DEFAULTS <string>name]
BEGIN INTERACTION [<string>name]

MASTER = <string>surface
SLAVE = <string>surface
SURFACES = <string>surface1 <string>surface2
KINEMATIC PARTITION = <real>kin_part
NORMAL TOLERANCE = <real> norm_tol
TANGENTIAL TOLERANCE = <real>tang_tol
OVERLAP NORMAL TOLERANCE = <real>over_norm_tol
OVERLAP TANGENTIAL TOLERANCE = <real>over_tang_tol
FRICTION MODEL = <string>name
82

AUTOMATIC KINEMATIC PARTITION
END [INTERACTION <string>name]

END [CONTACT DEFINITION <string>block_name]

The command block begins with the input line

BEGIN CONTACT DEFINITION <string>name

and is terminated with the input line

END [CONTACT DEFINITION <string>name] ,

where name is a name for this contact definition. The name should be unique among all
the definitions of contact for an analysis. All other contact commands are encapsulated
within this command block, as shown in the summary of the block presented previously.
These other contact commands are described in Section 2.12.2 through Section 2.12.9.
Section 2.12.10 gives an example of a valid contact definition.

A typical analysis will have only one CONTACT DEFINITION command block. However,
more than one contact definition can be used. Each CONTACT DEFINITION command
block creates its own contact entity. Therefore, fewer of these command blocks provide
more efficient contact processing.

2.12.2 Descriptions of Contact Surfaces
All surfaces that have the potential for interaction through contact must be identified as
contact surfaces. Presto input includes two ways to identify what surfaces are to be
included for contact computations. The CONTACT DEFINITION command block MUST
include some type of surface definition, either by use of the CONTACT SURFACE (Section
2.12.2.1) command line or the CONTACT ALL BLOCKS (Section 2.12.2.2) command line.

Any given face may NOT be included in more than one contact surface. See comments in
the following two sections.

2.12.2.1 Contact Surface

CONTACT SURFACE <string>name CONTAINS <string list>surfaces

The first approach for identifying contact surfaces is offered by the CONTACT SURFACE
command line. This command line identifies a set of surfaces (side sets) and element
blocks that will be considered as a single contact surface; the string name is a name for
this contact surface. This name should be unique to the other named contact surfaces
within this CONTACT DEFINITION command block. The name on the CONTACT
SURFACE command line (name) is used to refer to this surface in the interaction
definitions described below. The list denoted by surfaces is a list of strings identifying
the surfaces in the mesh file that are to be associated with this contact surface name. The
surfaces can be side sets or element blocks or any combination of the two. Any specified
element blocks are “skinned,” i.e., a surface is created from the exterior of the element
block. If an element block is not contiguous to any adjacent element blocks (no shared
83

faces with other element blocks) and it is skinned, all of the exterior faces on the element
block will appear in the list of contact faces. If an element block has shared faces with
other element blocks and it is skinned, the shared faces will NOT appear in the list of faces
defining the contact surface for the skinned element block.

The surfaces can contain a heterogeneous set of face types, and can contain any number of
side sets and element blocks.

If a face appears in a side set and also appears in a set of faces generated by the skinning of
an element block, this will produce an error. As indicated earlier, any given face may not
appear in more than one contact surface.

2.12.2.2 Contact All Blocks

CONTACT ALL BLOCKS

The second approach for identifying contact surfaces is offered by a single command line:
CONTACT ALL BLOCKS. Often an analyst may wish to consider contact between the
external surfaces of all the element blocks in the mesh. This command line causes all
element blocks to be “skinned,” i.e., a surface is created from the exterior of each element
block. The skinned surfaces are then given contact surface names identical to the name of
the element block. For instance, if a mesh contained the element blocks block_1,
block_10, and block_11, then CONTACT ALL BLOCKS would create three contact surfaces
from these blocks with the names block_1, block_10, and block_11, respectively. This
approach is useful for large models in which the individual specification of contact
surfaces would be unwieldy.

If the CONTACT ALL BLOCKS command line is used, contact surfaces cannot be defined
by the above CONTACT SURFACE command line. The use of the CONTACT ALL BLOCKS
command line would include all exposed faces on all element blocks in the contact set. A
CONTACT SURFACE command line would include at least one exposed face on an
element block. Specifying the same face in two different contact surfaces is not allowed.

2.12.3 Remove Initial Overlap
REMOVE INITIAL OVERLAP

Meshes supplied for finite element analyses frequently have some level of initial mesh
overlap, where finite element nodes rest inside the volume of elements not connected to
the node. This can cause problems with contact; overlaps may cause initial forces that are
nonphysical and potentially destabilizing. To remove these initial overlaps, Presto
provides the option of modifying the initial mesh to remove overlaps in surfaces defined
for contact. The REMOVE INITIAL OVERLAP command line is used to conduct this
operation.

This command line only removes overlaps that are detected along the surfaces defined for
contact, not all surfaces in the mesh. If this command line is used, the normal and
84

tangential tolerances for the removal of overlap can be specified either in the DEFAULTS
command block (Section 2.12.8) or in INTERACTION command blocks (Section 2.12.9).
Overlap removal tolerances specified in INTERACTION command blocks will overwrite
the default tolerances.

2.12.4 Angle for Multiple Interactions
MULTIPLE INTERACTIONS WITH ANGLE <real>angle(60.0)

Resolving contact interactions between a node penetrating near the edge between two
adjoining faces can occur in one of two ways. If the angle between the two faces is small,
then contact will identify one of the two faces to interact with, ignoring the other.
However, in cases where the angle between the faces is large enough such that they form a
discrete corner, returning a single interaction can yield poor results. In these cases, it is
better to create two interactions—one with each face. However, the contact package can
properly handle only a limited number of interactions per node (currently three), so it is in
general not always feasible to have an interaction between a node and every face at a
corner.

To provide some control over when a corner is “significant,” i.e., when multiple
interactions should be returned instead of just one interaction, Presto defines a critical
angle for multiple interactions via the MULTIPLE INTERACTIONS WITH ANGLE
command line, where angle is the angle over which an intersection between faces is
considered sharp. If the angle between adjoining faces is greater than this critical angle,
multiple interactions are created. By default, this critical angle is 60 degrees, which works
well for most analyses. This value can be changed in the contact input if needed.

2.12.5 Iterative Enforcement
NUMBER OF ITERATIONS = <integer>num_iterations(5)

During the enforcement phase of the contact, an iterative process can be used to align two
surfaces coming into contact. Rather than making one pass to compute contact forces for
node push-back, several passes can be made so as to reduce overlap error for contact
surfaces. The number of passes (iterations) is set by the value num_iterations in the
NUMBER OF ITERATIONS command line. The default value for the number of iterations
is 5. This command line affects only the enforcement phase of the contact. A single search
phase is used for contact detection, but the enforcement phase can use an iterative process.

2.12.6 Friction Models
To describe the type of interactions that occur between contact surfaces, the Presto input
for contact relies upon the definition of friction models. These models may then be applied
to all or some subset of the potential surface interactions defined for contact. The currently
available friction models are frictionless, constant coulomb friction, and tied contact. By
default, interactions between contact surfaces that have not had friction models assigned
are treated as frictionless. All friction models are command blocks, although some of the
85

models do not have any commands inside the command block. The commands for
defining the available friction models are described next.

2.12.6.1 Frictionless Model

BEGIN FRICTIONLESS MODEL <string>name
END [FRICTIONLESS MODEL <string>name]

The FRICTIONLESS MODEL command block defines frictionless contact between
surfaces. No command lines are needed inside the command block. In the above input
lines, name is a name assigned to this friction model.

2.12.6.2 Constant Friction Model

BEGIN CONSTANT FRICTION MODEL <string>name
FRICTION COEFFICIENT = <real>coeff

END [CONTACT FRICTION MODEL <string>name]

The CONSTANT FRICTION MODEL command block defines a constant coulomb friction
coefficient between two surfaces as they slide past each other in contact. No resistance is
provided to keep the surfaces together if they start to separate. In the above input lines,
name is a name assigned to this friction model, and coeff is the constant coulomb
friction coefficient.

2.12.6.3 Tied Model

BEGIN TIED MODEL <string>name
END [TIED MODEL <string>name]

The TIED MODEL command block restricts nodes found in initial contact with faces to
stay in the same relative location to the faces throughout the analysis. No command lines
are needed inside the command block. In the above input lines, name is a name assigned to
this friction model.

2.12.7 Analytic Contact Surfaces
Presto permits the definition of rigid analytic surfaces for use in contact. Contact
evaluation between a deformable body and a rigid analytic surface is much faster than
contact evaluation between two deformable bodies. Therefore, using a rigid analytic
surface is more efficient than using a very stiff deformable body to try to approximate a
rigid surface. The commands for defining the rigid analytic surfaces currently available in
Presto—plane, cylinder, and sphere—are described next.

2.12.7.1 Plane

BEGIN ANALYTIC PLANE [<string>name]
 NORMAL = <string>defined_direction
 POINT = <string>defined_point
END [ANALYTIC PLANE <string>name]
86

Analytic planes are not deformable, they cannot be moved, and two analytic planes will
not interact with each other. The ANALYTIC PLANE command block for defining an
analytic plane begins with the input line

BEGIN ANALYTIC PLANE [<string>name]

and is terminated with the input line

END [ANALYTIC PLANE <string>name] ,

where the string name is some user-selected name for this particular plane. This name,
however, is not used internally by the code and is therefore optional. The string
defined_direction in the NORMAL command line refers to a vector that has been
defined with a DEFINE DIRECTION command line; this vector defines the outward
normal to the plane. The string defined_point in the POINT command line refers to a
point in a plane that has been defined with a DEFINE POINT command line. The
deformable body should initially be on the side of the plane defined by the outward
normal.

2.12.7.2 Cylinder

BEGIN ANALYTIC CYLINDER [<string>name]
 CENTER = <string>defined_point
 AXIAL DIRECTION = <string>defined_axis
 RADIUS = <real>cylinder_radius
 LENGTH = <real>cylinder_length
 CONTACT NORMAL = <string>OUTSIDE|INSIDE
END [ANALYTIC CYLINDER <string>name]

Analytic cylindrical surfaces are not deformable, they cannot be moved, and two analytic
cylindrical surfaces will not interact with each other. The ANALYTIC CYLINDER
command block for defining an analytic cylindrical surface begins with the command line

BEGIN ANALYTIC CYLINDER [<string>name]

and is terminated with the command line

END [ANALYTIC CYLINDER <string>name] ,

where the string name is some user-selected name for this particular cylindrical surface.
This name, however, is not used internally by the code and is therefore optional. The
cylindrical surface has a finite length; the cylindrical surface is not an infinitely long
surface. To fully specify the location of the cylindrical surface, therefore, you must specify
the center point of the cylindrical surface in addition to the axial direction of the cylinder.
These quantities, center point and direction, are defined by the CENTER and AXIAL
DIRECTION command lines, respectively. The string defined_point in the CENTER
command line refers to a point that has been defined with a DEFINE POINT command
line; the string defined_axis in the AXIAL DIRECTION command line refers to a
vector that has been defined with a DEFINE DIRECTION command line. The radius of the
cylinder is the real value cylinder_radius specified with the RADIUS command line,
and the length of the cylinder is the real value cylinder_length specified by the
LENGTH command line. The length of the cylinder (cylinder_length) extends a
87

distance of cylinder_length divided by 2 along the cylinder axis in both directions
from the center point. If the rigid surface is the outside of the cylinder, you should specify

CONTACT NORMAL = OUTSIDE .

If the rigid surface is the inside of the cylinder, you should specify

CONTACT NORMAL = INSIDE .

2.12.7.3 Sphere

BEGIN ANALYTIC SPHERE [<string>name]
 CENTER = <string>defined_point
 RADIUS = <real>sphere_radius
END [ANALYTIC SPHERE <string>name]

Analytic spherical surfaces are not deformable, they cannot be moved, and two analytic
spherical surfaces will not interact with each other. The ANALYTIC SPHERE command
block for defining an analytic spherical surface begins with the input line

BEGIN ANALYTIC SPHERE [<string>name]

and is terminated with the input line

END [ANALYTIC SPHERE <string>name] ,

where the string name is some user-selected name for this particular spherical surface.
This name, however, is not used internally by the code and is therefore optional. The
center point of the sphere is defined by the CENTER command line, which references a
point defined_point specified by a DEFINE POINT command line. The radius of the
sphere is the real value sphere_radius specified with the RADIUS command line.

2.12.8 Default Values for Interactions
BEGIN DEFAULTS [<string>name]

NORMAL TOLERANCE = <real>norm_tol
TANGENTIAL TOLERANCE = <real>tang_tol
OVERLAP NORMAL TOLERANCE = <real>over_norm_tol
OVERLAP TANGENTIAL TOLERANCE = <real>over_tang_tol
FRICTION MODEL = <string>name
AUTOMATIC KINEMATIC PARTITION

END [DEFAULTS <string>name]

The DEFAULTS command block defines default values for the interactions between all
contact surfaces, including interactions between a contact surface and itself (self-contact).
If a DEFAULTS command block is provided, interactions between all the specified contact
surfaces are defined. Without a DEFAULTS command block, only specifically defined
interactions are defined. Only one DEFAULTS command block is permitted in a CONTACT
DEFINITION command block. Some of the values for interactions have system defaults;
values defined within a DEFAULTS command block override the system defaults.

The command block begins with the input line
88

BEGIN DEFAULTS [<string>name]

and ends with the input line

END [DEFAULTS <string>name] ,

where name is a name for the DEFAULTS command block. Note that this name is currently
not used or required.

The valid commands within a DEFAULTS command block are described in Section
2.12.8.1 through Section 2.12.8.4. The values specified by these commands are applied by
default to all interaction contact surfaces, unless overridden by a specific interaction
definition. Normal and tangential tolerances, including the overlap normal and tangential
tolerances, must always be specified by the user at some point. There are no default values
for the normal and tangential tolerances since these are mesh-dependent values. All
surfaces default to the frictionless contact model. The default for the kinematic partition
factor for all surfaces is 0.5.

2.12.8.1 Normal and Tangential Tolerance

NORMAL TOLERANCE = <real>norm_tol
TANGENTIAL TOLERANCE = <real>tang_tol

The contact capabilities within Presto use a box defined around each face to locate nodes
that may potentially contact the face. This box is defined by a tolerance normal to the face
and another tolerance tangential to the face (see Figure 2.3). In the above command lines,
norm_tol is the normal tolerance for the search box and tang_tol is the tangential
tolerance for the search box.

Figure 2.3. Illustration of normal and tangential tolerances.

Both of these tolerances are absolute distances in the same units as the analysis. The
proper tolerances are problem dependent. There are no system defaults for these

Normal tolerance

Tangential tolerance

Normal tolerance

Tangential tolerance
89

tolerances; they must be specified either in a DEFAULTS command block or in an
INTERACTION command block.

If a normal tolerance is specified in the DEFAULTS command block, the tolerance applies
to all interactions. The default normal tolerance can be overwritten for a specific
interaction by specifying a value for the normal tolerance for that interaction inside the
BEGIN INTERACTION command block. The same is true for the tangential tolerance.

If no default normal tolerance is specified, then all surface interactions must have a normal
tolerance specified. The same is true for the tangential tolerance.

2.12.8.2 Normal and Tangential Overlap Tolerance

OVERLAP NORMAL TOLERANCE = <real>over_norm_tol
OVERLAP TANGENTIAL TOLERANCE = <real>over_tang_tol

The Presto contact input also permits the separate definition of normal and tangential
search tolerances for the overlap removal option. Depending on the problem, the
tolerances required to remove initial overlap may need to be different from those required
for standard contact detection. In the OVERLAP NORMAL TOLERANCE command line,
over_norm_tol is the normal tolerance for the search box for the removal of initial
overlap. In the OVERLAP TANGENTIAL TOLERANCE command line, over_tang_tol is
the tangential tolerance for the search box for the removal of initial overlap.

Both of these tolerances are absolute distances in the same units as the analysis. The
proper tolerances for initial overlap are problem dependent. These tolerances must be
chosen in such a way that they remove critical mesh overlap while not collapsing any
small features in the mesh. Furthermore, the removal of the mesh overlap only occurs over
a single element; if the mesh penetration is more than one element deep, removing overlap
may invert elements.

If an overlap normal tolerance is specified in the DEFAULTS command block, the tolerance
applies to all interactions. The default overlap normal tolerance can be overwritten for a
specific interaction by specifying a value for the overlap normal tolerance for that
interaction inside the BEGIN INTERACTION command block. The same is true for the
overlap tangential tolerance.

If no default overlap normal tolerance is specified, then all surface interactions must have
an overlap normal tolerance specified. The same is true for the overlap tangential
tolerance.

2.12.8.3 Friction Model

FRICTION MODEL = <string>name

The FRICTION MODEL command line permits the description of how surfaces interact
with each other using a friction model defined in a CONTACT DEFINITION command
90

block (see Section 2.12.6). In the above command line, name is the name of the friction
model to apply, as defined in a CONTACT DEFINITION command block.

As a system default, all interactions are defined as frictionless contact.

2.12.8.4 Automatic Kinematic Partition

AUTOMATIC KINEMATIC PARTITION

If the AUTOMATIC KINEMATIC PARTITION command line is used, the contact package
will automatically compute the kinematic partition factors for surfaces (Section 2.12.9.2).
The kinematic partitions are computed based on nodal average density and wave speed.
The partition factors are exact when the opposing surfaces have the same mesh resolution.

For the interaction of any two surfaces, the sum of the partition factors for the surfaces
must be 1.0. This is automatically taken care of when the AUTOMATIC KINEMATIC
PARTITION command line is used. The default value for kinematic partition factors for all
surfaces is 0.5.

The AUTOMATIC KINEMATIC PARTITION command line can be used to set the
kinematic partitions for all interactions or to set the kinematic partitions for specific
interactions. Thus the command line can appear in two different scopes:

1. The command line can be used within the DEFAULTS command block. In this case,
all contact surface interactions will use the automatic kinematic partitioning scheme
by default. This will override the default case that assigns a kinematic partition factor
of 0.5 to all surfaces. For particular interactions, it is possible to override the use of
the automatic kinematic partition factors by specifying kinematic partition values
(with the KINEMATIC PARTITION command line) within the INTERACTION
command blocks for those interactions.

2. The command line can be used inside an INTERACTION command block. If the
automatic partitioning command line appears inside an INTERACTION command
block, the kinematic partition factors for that particular interaction will be calculated
by the automatic kinematic partition scheme.

2.12.9 Values for Specific Interactions
BEGIN INTERACTION [<string>name]

MASTER = <string>surface
SLAVE = <string>surface
SURFACES = <string>surface1 <string>surface2
KINEMATIC PARTITION = <real>kin_part
NORMAL TOLERANCE = <real> norm_tol
TANGENTIAL TOLERANCE = <real>tang_tol
OVERLAP NORMAL TOLERANCE = <real>over_norm_tol
OVERLAP TANGENTIAL TOLERANCE = <real>over_tang_tol
FRICTION MODEL = <string>name
AUTOMATIC KINEMATIC PARTITION

END [INTERACTION <string>name]
91

The Presto contact input also permits the setting of values for specific interactions using
the INTERACTION command block. If a DEFAULTS command block is present within a
CONTACT DEFINITION command block, the values provided by a an INTERACTION
command block override the defined defaults. If a DEFAULTS command block is not
present, only those interactions described by INTERACTION command blocks are
searched for contact, and values without system defaults must be specified.

The INTERACTION command block begins with

BEGIN INTERACTION [<string>name]

and ends with

END [INTERACTION <string>name] ,

where name is a name for the interaction. Note that this name is currently not used or
required.

All of the tolerance and friction model commands described in Section 2.12.8.1 through
Section 2.12.8.3 are valid for this command block, as well as the commands described
below in Section 2.12.9.1 and Section 2.12.9.2. The same is true for the AUTOMATIC
KINEMATIC PARTITION command line described in Section 2.12.8.4.

2.12.9.1 Surface Identification

MASTER = <string>surface
SLAVE = <string>surface

SURFACES = <string>surface1 <string>surface2

There are two methods to identify the surfaces described by a specific interaction. To
specify a one-way interaction, where the nodes of the “slave” surfaces are searched against
the “master” surface, use the MASTER and SLAVE command lines, where surface is the
name of a contact surface defined in the CONTACT DEFINITION command block (see
Section 2.12.2). In this case, all other values specified (tolerances, friction model,
kinematic partition) are applied only to nodes of the slave surface interacting with faces of
the master surface.

Alternatively, both surfaces can be given in a single line with the SURFACES command
line, where surface1 and surface2 are the names of the two contact surfaces to which
the interaction refers. In this syntax, the values supplied for the interaction are defined for
the two-way interaction (i.e., both the first surface as master and the second as slave, and
vice versa).

Either of these syntaxes can be used for self-contact. For the MASTER and SLAVE
command lines, both master and slave can be the same surface. Similarly, the two surfaces
given in the SURFACES command line can be the same contact surface.
92

2.12.9.2 Kinematic Partition

KINEMATIC PARTITION = <real>kin_part

The KINEMATIC PARTITION command line permits partitioning of the enforcement of
contact between the two surfaces. This capability is important in cases where contact
occurs between two materials of highly disparate stiffness. Physically, we would expect a
material with a higher stiffness to have more of an effect in determining the position of the
contact surface than a more compliant material. We would then assign a higher kinematic
partition to the stiffer material.

Another case where the kinematic partition can become important is when meshes with
dissimilar resolutions contact each other. If an interaction is defined with a fine mesh as
the master surface and a coarse mesh as a slave surface, the contact algorithms may permit
nodes on the master surface to penetrate the slave surface. By increasing the kinematic
partition factor on the coarse mesh, the magnitude of this penetration can be reduced.

The real value kin_part in the command line is the kinematic partition factor. If the
interaction is specified using the MASTER and SLAVE line commands, the kinematic
partition is the factor for the slave nodes. Note that if both interactions are specified, i.e.,
two interactions are defined with opposite master/slave definitions, the kinematic
partitions for the two interactions must add up to 1.0 so that the full contact force is
applied. If the interaction is specified using the SURFACES command line, the kinematic
partition factor refers to the second surface, and the first surface automatically receives a
kinematic partition of 1.0 - kin_part.

For self-contact, the kinematic partition factor can be set to 0.5 or 0.0. If the kinematic
partition factor is set to 0.0, the self-contact is turned off.

2.12.10 Example
The following contact definition is valid and demonstrates the use of the above commands.

contact definition for problem
BEGIN CONTACT DEFINITION contact_def

define contact surfaces
CONTACT SURFACE surf_1 CONTAINS block_1
CONTACT SURFACE surf_2 CONTAINS surface_2 block_2
CONTACT SURFACE surf_3 CONTAINS block_3 block_4

set up removal of initial overlap
REMOVE INITIAL OVERLAP

define friction models
BEGIN FRICTIONLESS MODEL no_friction
END
BEGIN CONSTANT FRICTION MODEL some_friction

FRICTION COEFFICIENT = 0.5
END

define defaults for contact interactions
93

BEGIN DEFAULTS
NORMAL TOLERANCE = 0.1
TANGENTIAL TOLERANCE = 0.05
OVERLAP NORMAL TOLERANCE = 0.01
OVERLAP TANGENTIAL TOLERANCE = 0.005
FRICTION MODEL = some_friction

END

define some specific contact interactions
interactions between surf_2 and surf_3
BEGIN INTERACTION

SURFACES = surf_2 surf_3
KINEMATIC PARTITION = 0.2
FRICTION MODEL = no_friction
NORMAL TOLERANCE = 0.2

END

self contact on surf_1
BEGIN INTERACTION

SURFACES = surf_1 surf_1
OVERLAP NORMAL TOLERANCE = 0.2
OVERLAP TANGENTIAL TOLERANCE = 0.1

END
END
94

2.13 Results Output
BEGIN RESULTS OUTPUT <string>results_name

DATABASE NAME = <string>results_file_name
DATABASE TYPE = <string>database_type(exodusII)
NODE VARIABLES = <string>variable_name

[AS <string>dbase_variable_name
<string>variable_name AS
<string>dbase_variable_name ...]

NODAL VARIABLES = <string>variable_name
[AS <string>dbase_variable_name
<string>variable_name AS
<string>dbase_variable_name ...]

ELEMENT VARIABLES = <string>variable_name
[AS <string>dbase_variable_name
<string>variable_name AS
<string>dbase_variable_name ...]

GLOBAL VARIABLES = <string>variable_name
[AS <string>dbase_variable_name
<string>variable_name AS
<string>dbase_variable_name ...]

START TIME = <real>output_start_time
TIMESTEP ADJUSTMENT INTERVAL = <integer>steps
AT TIME <real>time_begin INCREMENT =

<real>time_increment_dt
ADDITIONAL TIMES = <real>output_time1

<real>output_time2 ...
AT STEP <integer>step_begin INCREMENT =

<integer>step_increment
ADDITIONAL STEPS = <integer>output_step1

<integer>output_step2 ...
TERMINATION TIME = <real>termination_time_value

END [RESULTS OUTPUT <string>results_name]

You can specify a results file, the results to be included in this file, and the frequency at
which results are written by using a RESULTS OUTPUT command block. The command
block appears inside the region scope.

More than one results file can be specified for an analysis. Thus for each results file, there
will be one RESULTS OUTPUT command block. The command block begins with

BEGIN RESULTS OUTPUT <string>results_name

and is terminated with

END [RESULTS OUTPUT <string>results_name] ,

where results_name is a user-selected name for the command block. Nested within the
RESULTS OUTPUT command block are a set of command lines, as shown in the block
summary given above. The first two command lines listed (DATABASE NAME and
DATABASE TYPE) give pertinent information about the results file. The command line

DATABASE NAME = <string>results_file_name
95

gives the name of the results file with the string results_file_name. If the results file
is to appear in the current directory and is named job.e, this command line would appear
as

DATABASE NAME = job.e .

If the results file is to be created in some other directory, the command line would have to
show the path to that directory.

If the results file does not use the Exodus II format, you must specify the format for the
results file using the command line

DATABASE TYPE = <string>database_type(exodusII) .

Currently, only the Exodus II database is supported by the SIERRA Framework. Other
options will be added in the future.

The other command lines that appear in the RESULTS OUTPUT command block determine
the type and frequency of information that is output. Descriptions of these command lines
follow in Section 2.13.1 through Section 2.13.10.

2.13.1 Output Nodal Variables
NODE VARIABLES = <string>variable_name

[AS <string>dbase_variable_name
<string>variable_name AS <string>dbase_variable_name ...]

NODAL VARIABLES = <string>variable_name
[AS <string>dbase_variable_name
<string>variable_name AS <string>dbase_variable_name ...]

Any registered nodal variable in Presto can be selected for output in the results file by
using a command line in one of the two forms shown above. The only difference between
the two forms is the use of NODE or NODAL. The registered variables are listed in Appendix
B.

It is possible to specify an alias for any of the registered nodal variables by using the AS
specification. Suppose, for example, you wanted to output the external forces in Presto,
which are registered as force_external, with the alias f_ext. You would then enter
the command line

NODE VARIABLES = force_external AS f_ext .

The NODE VARIABLES command line can be used any number of times within a
RESULTS OUTPUT command block. It is also possible to specify more than one nodal
variable for output on a command line. If you also wanted to output the internal forces,
which are registered as force_internal, with the alias f_int, you would enter the
command line

NODE VARIABLES = force_external AS f_ext
force_internal AS f_int .
96

The specification of an alias is always optional.

2.13.2 Output Element Variables
ELEMENT VARIABLES = <string>variable_name

[AS <string>dbase_variable_name
<string>variable_name AS <string>dbase_variable_name ...]

Any registered element variable in Presto can be selected for output in the results file by
using the ELEMENT VARIABLES command line. The registered variables are listed in
Appendix B.

It is possible to specify an alias for any of the registered element variables by using the AS
specification. Suppose, for example, you wanted to output the stress in Presto, which is
registered as rotated_stress, with the alias stress. You would then enter the
command line

ELEMENT VARIABLES = rotated_stress AS stress .

The ELEMENT VARIABLES command line can be used any number of times within a
RESULTS OUTPUT command block. It is also possible to specify more than one element
variable for output on a command line. If you also wanted to output the stretch, which is
registered as stretch, with the alias stretch, you would enter the command line

ELEMENT VARIABLES = rotated_stress AS stress
stretch AS stretch .

The specification of an alias is always optional.

2.13.3 Output Global Variables
GLOBAL VARIABLES = <string>variable_name

[AS <string>dbase_variable_name
<string>variable_name AS <string>dbase_variable_name ...]

Any registered global variable in Presto can be selected for output in the results file by
using the GLOBAL VARIABLES command line. The registered variables are listed in
Appendix B. With the AS specification, you can specify the variable and select an alias for
this variable in the results file. Suppose, for example, you wanted to output the time steps
in Presto, which are identified as timestep, with the alias tstep. You would then enter
the command line

GLOBAL VARIABLES = timestep AS tstep .

The GLOBAL VARIABLES command line can be used any number of times within a
RESULTS OUTPUT command block. It is also possible to specify more than one global
variable for output on a command line. If you also wanted to output the kinetic energy,
which is registered as KineticEnergy, with the alias ke, you would enter the command
line

GLOBAL VARIABLES = timestep as tstep
KineticEnergy as ke .
97

The specification of an alias is always optional.

2.13.4 Set Begin Time for Results Output
START TIME = <real>output_start_time

Using the START TIME command line, you can write output to the results file beginning at
time output_start_time. No results will be written before this time. If other
commands set times for results (AT TIME, ADDITIONAL TIMES) that are less than
output_start_time, those times will be ignored, and results will not be written at
those times.

2.13.5 Adjust Interval for Time Steps
TIMESTEP ADJUSTMENT INTERVAL = <integer>steps

This command line is used to specify that the output will be at exactly the times specified.
To hit the output times exactly in an explicit, transient dynamics code, it is necessary to
adjust the time step as the time approaches an output time. The integer value steps in the
TIMESTEP ADJUSTMENT INTERVAL command line specifies the number of time steps to
look ahead in order to adjust the time step.

If this command line does not appear, results are output at times closest to the specified
output times.

2.13.6 Output Interval Specified by Time Increment
AT TIME <real>time_begin INCREMENT = <real>time_increment_dt

At the time specified by time_begin, results will be output every time increment given
by the real value time_increment_dt.

2.13.7 Additional Times for Output
ADDITIONAL TIMES = <real>output_time1 <real>output_time2 ...

In addition to any times specified by the command line in Section 2.13.6, you can use the
ADDITIONAL TIMES command line to specify an arbitrary number of additional output
times.

2.13.8 Output Interval Specified by Step Increment
AT STEP <integer>step_begin INCREMENT =

<integer>step_increment

At the step specified by step_begin, results will be output every step increment given by
the integer value step_increment.
98

2.13.9 Additional Steps for Output
ADDITIONAL STEPS = <integer>output_step1

<integer>output_step2 ...

In addition to any steps specified by the command line in Section 2.13.8, you can use the
ADDITIONAL STEPS command line to specify an arbitrary number of additional output
steps.

2.13.10 Set End Time for Results Output
 TERMINATION TIME = <real>termination_time_value

Results will not be written to the results file after time termination_time_value. If
other commands set times for results (AT TIME, ADDITIONAL TIMES) that are greater
than termination_time_value, those times will be ignored, and results will not be
written at those times.
99

2.14 History Output
BEGIN HISTORY OUTPUT <string>history_name

DATABASE NAME = <string>history_file_name
DATABASE TYPE = <string>database_type(exodusII)
VARIABLE = <string>entity_type

<string>internal_name
AT <string>entity_type <integer>entity_id
AS <string>history_variable_name

VARIABLE = <string>entity_type_global
<string>internal_name
AS <string>history_variable_name

START TIME = <real>output_start_time
TIMESTEP ADJUSTMENT INTERVAL = <integer>steps
AT TIME <real>time_begin INCREMENT =

<real>time_increment_dt
ADDITIONAL TIMES = <real>output_time1

<real>output_time2 ...
AT STEP <integer>step_begin INCREMENT =

<integer>step_increment
ADDITIONAL STEPS = <integer>output_step1

<integer>output_step2 ...
TERMINATION TIME = <real>termination_time_value

END [HISTORY OUTPUT <string>history_name]

A history file gives nodal results (displacement, force_external, etc.) for specific nodes and
global results at specified times. You can specify a history file, the results to be included in
this file, and the frequency at which results are written by using a HISTORY OUTPUT
command block. The command block appears inside the region scope.

More than one history file can be specified for an analysis. For each history file, there will
be one HISTORY OUTPUT command block. The command block for a history file
description begins with

BEGIN HISTORY OUTPUT <string>history_name

and is terminated with

END [HISTORY OUTPUT <string>history_name] ,

where history_name is a user-selected name for the command block. Nested within the
HISTORY OUTPUT command block are a set of command lines, as shown in the block
summary given above. The first two command lines listed (DATABASE NAME and
DATABASE TYPE) give pertinent information about the history file. The command line

DATABASE NAME = <string>history_file_name

gives the name of the history file with the string history_file_name. If the history file
is to appear in the current directory and is named job.e, this command line would appear
as

DATABASE NAME = job.e .

If the history file is to be created in some other directory, the command line would have to
show the path to that directory.
100

If the history file does not use the Exodus II format, you must specify the format for the
history file using the command line

DATABASE TYPE = <string>database_type(exodusII) .

Currently, only the Exodus II database is supported by the SIERRA Framework. Other
options will be added in the future.

The other command lines that appear in the HISTORY OUTPUT command block determine
the type and frequency of information that is output. Descriptions of these command lines
follow in Section 2.14.1 through Section 2.14.8. Note that the command lines for
controlling the frequency of history output (in Section 2.14.2 through Section 2.14.8) are
the same as those for controlling the frequency of results output. These frequency-related
command lines are repeated here for convenience.

2.14.1 Output Variables
The VARIABLE command line is used to select registered variables for output in the
history file. Two forms of this command line are available, depending on the type of
variable. The first form selects registered nodal and element variables. The second form
selects global variables only.

2.14.1.1 Nodal and Element Output Variables

VARIABLE = <string>entity_type <string>internal_name
AT <string>entity_type <integer>entity_id
[AS <string>history_variable_name]

This form of the VARIABLE command line lets you select any registered nodal or element
variable in Presto for output in the history file. The registered variables are listed in
Appendix B. The variable is identified in the command line by setting entity_type to
NODE (or NODAL) or ELEMENT and is selected with the string internal_name. In
addition to an entity type, you must select a specific entity (node or element number) with
the integer quantity entity_id. You can also specify an arbitrary name,
history_variable_name, for the selected entity. For example, suppose you want to
output the accelerations at node 88. The command line to obtain the accelerations at node
88 for the history file would be

VARIABLE = NODE ACCELERATION AT NODE 88 AS accel_88 ,

where accel_88 is the arbitrary name that will be used for this history variable in the
history file.

Note that either the key word NODE or NODAL can be used for nodal quantities. The
specification of an alias is always optional.

2.14.1.2 Global Output Variables

VARIABLE = <string>entity_type_global
<string>internal_name
101

[AS <string>history_variable_name]

This form of the VARIABLE command line lets you select any registered global variable in
Presto for output in the history file. The registered variables are listed in Appendix B. The
string entity_type_global in the command line can only be GLOBAL, and the
registered variable is selected with the string internal_name. You can also specify an
arbitrary name, history_variable_name, for the selected entity. For example, suppose
you want to output the kinetic energy (KineticEnergy) as KE. The command line to obtain
the kinetic energy in the history file would be

VARIABLE = GLOBAL KineticEnergy AS KE .

The specification of an alias is always optional.

2.14.2 Set Begin Time for History Output
START TIME = <real>output_start_time

Using the START TIME command line, you can write history variables to the history file
beginning at time output_start_time. No history variables will be written before this
time. If other commands set times for history output (AT TIME, ADDITIONAL TIMES)
that are less than output_start_time, those times will be ignored, and history output
will not be written at those times.

2.14.3 Adjust Interval for Time Steps
TIMESTEP ADJUSTMENT INTERVAL = <integer>steps

This command line is used to specify that the output will be at exactly the times specified.
To hit the output times exactly in an explicit, transient dynamics code, it is necessary to
adjust the time step as the time approaches an output time. The integer value steps in the
TIMESTEP ADJUSTMENT INTERVAL command line specifies the number of time steps to
look ahead in order to adjust the time step.

If this command line does not appear, history variables are output at times closest to the
specified output times.

2.14.4 Output Interval Specified by Time Increment
AT TIME <real>time_begin INCREMENT = <real>time_increment_dt

At the time specified by time_begin, history variables will be output every time
increment given by the real value time_increment_dt.

2.14.5 Additional Times for Output
ADDITIONAL TIMES = <real>output_time1 <real>output_time2 ...
102

In addition to any times specified by the command line in Section 2.14.4, you can use the
ADDITIONAL TIMES command line to specify an arbitrary number of additional output
times.

2.14.6 Output Interval Specified by Step Increment
AT STEP <integer>step_begin INCREMENT =

<integer>step_increment

At the step specified by step_begin, history variables will be output every step
increment given by the integer value step_increment.

2.14.7 Additional Steps for Output
ADDITIONAL STEPS = <integer>output_step1

<integer>output_step2 ...

In addition to any steps specified by the command line in Section 2.14.6, you can use the
ADDITIONAL STEPS command line to specify an arbitrary number of additional output
steps.

2.14.8 Set End Time for History Output
 TERMINATION TIME = <real>termination_time_value

History output will not be written to the history file after time
termination_time_value. If other commands set times for history output (AT TIME,
ADDITIONAL TIMES) that are greater than termination_time_value, those times
will be ignored, and history output will not be written at those times.
103

2.15 Restart Data
BEGIN RESTART DATA <string>restart_name

DATABASE NAME = <string>restart_file
INPUT DATABASE NAME = <string>input_restart_file
OUTPUT DATABASE NAME = <string>output_restart_file
DATABASE TYPE = <string>database_type(exodusII)
START TIME = <real>restart_start_time
TIMESTEP ADJUSTMENT INTERVAL = <integer>steps
AT TIME <real>time_begin INCREMENT =

<real>time_increment_dt
ADDITIONAL TIMES = <real>output_time1

<real>output_time2 ...
AT STEP <integer>step_begin INCREMENT =

<integer>step_increment
ADDITIONAL STEPS = <integer>output_step1

<integer>output_step2 ...
TERMINATION TIME = <real>termination_time_value

END [RESTART DATA <string>restart_name]

You can specify restart files, either to be written to or read from, and the frequency at
which restarts are written by using a RESTART DATA command block. The command
block appears inside the region scope. To initiate a restart, the RESTART TIME command
line (see Section 2.1.3.1) must also be used. This command line appears in the domain
scope.

The RESTART DATA command block begins with the input line

BEGIN RESTART DATA <string>restart_name

and is terminated with

END [RESTART DATA <string>restart_name] ,

where restart_name is a user-selected name for the RESTART DATA command block.

Nested within the RESTART DATA command block are a set of command lines, as shown
in the block summary given above. With the first command line listed, you can specify a
database containing the input restart data, the output restart data, or both:

DATABASE NAME = <string>restart_file_name .

If the analysis is writing restart data, the data will be written to the file
restart_file_name. The original restart file will be overwritten if it exists (after being
read if applicable). If the file name begins with the ‘/’ character, it is an absolute path;
otherwise, the path to the current directory will be prepended to the name
restart_file_name. If the restart file is to appear in the current directory and is named
job_restart.e, this command line would appear as

DATABASE NAME = job_restart.e .

If the restart file is to be created in some other directory, the command line would have to
show the path to that directory.
104

You can specify the database containing the input restart data by using the command line

INPUT DATABASE NAME = <string>restart_input_file .

If this analysis is being restarted, restart data will be read from this file. You can specify
the database containing the output restart data by using the command line

OUTPUT DATABASE NAME = <string>restart_output_file .

If the analysis is writing restart data, the data will be written to this file. These latter two
commands use the same file-naming convention as the command line DATABASE NAME.

If the restart file does not use the Exodus II format, you must specify the format for the
results file using the DATABASE TYPE command line:

DATABASE TYPE = <string>database_type(exodusII) .

Currently, only the Exodus II database is supported by the SIERRA Framework. Other
options will be added in the future.

The other command lines that appear in the RESTART DATA command block determine
the frequency at which restarts are written. Descriptions of these command lines follow in
Section 2.15.1 through Section 2.15.7. Note that the command lines for controlling the
frequency of restart output are the same as those for controlling the frequency of results
output and history output. These frequency-related command lines are repeated here for
convenience.

2.15.1 Set Begin Time for Restart Writes
START TIME = <real>restart_start_time

Using the START TIME command line, you can write restarts to the restart output file
beginning at time restart_start_time. No restarts will be written before this time. If
other commands set times for restarts (AT TIME, ADDITIONAL TIMES) that are less than
restart_start_time, those times will be ignored, and restarts will not be written at
those times.

2.15.2 Adjust Interval for Time Steps
TIMESTEP ADJUSTMENT INTERVAL = <integer>steps

This command line is used to specify that the restarts will be written at exactly the times
specified. To hit the restart times exactly in an explicit transient dynamics code, it is
necessary to adjust the time step as the time approaches a restart time. The integer value
steps in the TIMESTEP ADJUSTMENT INTERVAL command line specifies the number
of time steps to look ahead in order to adjust the time step.

If this command line does not appear, then restarts are written at times closest to the
specified restart times.
105

2.15.3 Restart Interval Specified by Time Increment
AT TIME <real>time_begin INCREMENT = <real>time_increment_dt

At the time specified by time_begin, restarts will be written every time increment given
by the real value time_increment_dt.

2.15.4 Additional Times for Restart
ADDITIONAL TIMES = <real>output_time1 <real>output_time2 ...

In addition to any restart times specified by the command line in Section 2.15.3, you can
use the ADDITIONAL TIMES command line to specify an arbitrary number of additional
restart times.

2.15.5 Restart Interval Specified by Step Increment
AT STEP <integer>step_begin INCREMENT =

<integer>step_increment

At the step specified by step_begin, restarts will be written every step increment given
by the integer value step_increment.

2.15.6 Additional Steps for Restart
ADDITIONAL STEPS = <integer>output_step1

<integer>output_step2 ...

In addition to any steps specified by the command line in Section 2.15.5, you can use the
ADDITIONAL STEPS command line to specify an arbitrary number of additional restart
steps.

2.15.7 Set End Time for Restart Writes
 TERMINATION TIME = <real>termination_time_value

Restarts will not be written to the restart output file after time
termination_time_value. If other commands set times for restarts (AT TIME,
ADDITIONAL TIMES) that are greater than termination_time_value, those times
will be ignored, and restarts will not be written at those times.
106

3 Example Problem
This section provides an example problem to illustrate the construction of an input file for
an analysis. The example problem consists of 124 spheres made of lead enclosed in a steel
box. The steel box has an open top into which a steel plate is placed (see Figure 3.1). A
prescribed velocity is then applied on the steel plate, pushing it into the box and crushing
the spheres contained within using frictionless contact. This problem is a severe test for
the contact algorithms as the spheres crush into a solid block. See Figure 3.2 for results of
this problem.

Figure 3.1. Mesh for example problem: (a) Box (blue and green surfaces) with
plate in top (red surface) and (b) Mesh with blue and red surfaces removed to
show internal spheres (yellow).

Figure 3.2. Results of Crush 124 Spheres test.

The input file is described below, with comments to explain every few lines. Following the
description, the full input file is listed again. Most of the keywords in this example are all
lowercase, which is different from the convention we have used to describe the command

(a) (b)

t = 0.000333 second t = 0.0007 second
107

lines in this document. However, all of the lowercase usage in the following example is an
acceptable format in Presto.

The input file starts with a begin sierra statement, as is required for all input files:

begin sierra crush_124_spheres

We now need to define the functions used with this problem. The boundary conditions
require a function for the initial velocity, as follows:

 begin definition for function constant_velocity
 type is piecewise linear
 ordinate is velocity
 abscissa is time
 begin values
 0.0 30.0
 1.0 30.0
 end values
 end definition for function constant_velocity

To define the boundary conditions, we need to define the direction for the initial
velocity—this is in the y-direction. We could also choose to simply specify the Y
component for the initial condition, but this input file uses directions.

 define direction y_axis with vector 0.0 1.0 0.0

Next we define the material models that will be used for this analysis. There are two
materials in this problem: steel for the box, and lead for the spheres. Both materials use the
elastic-plastic material model (denoted as elastic_plastic).

 begin property specification for material steel
 density = 7871.966988

 begin parameters for model elastic_plastic
 youngs modulus = 1.999479615e+11
 poissons ratio = 0.33333
 yield stress = 275790291.7
 hardening modulus = 275790291.7
 beta = 1.0
 end parameters for model elastic_plastic

 end property specification for material steel

 begin property specification for material lead
 density = 11253.30062

 begin parameters for model elastic_plastic
 youngs modulus = 1.378951459e+10
 poissons ratio = 0.44
 yield stress = 13789514.59
 hardening modulus = 0.0
 beta = 1.0
 end parameters for model elastic_plastic

 end property specification for material lead
108

Now, we define the finite element mesh. This includes specification of the file that
contains the mesh, as well as a list of all the element blocks we will use from the mesh and
the material associated with each block. The name of the file is crush_124_spheres.g. The
specification of the database type is optional—ExodusII is the default. Currently, each
element block must be defined individually. For this particular problem, all of the spheres
are the same element block. Each sphere is a distinct geometry entity, but all spheres
constitute one element block in the Exodus II database. Note that the three element blocks
that make up the box and lid all reference the same material description. The material
description is not repeated three times. The material description for steel appears once and
is then referenced three times.

 begin finite element model mesh1
 Database Name = crush_124_spheres.g
 Database Type = exodusII

 begin parameters for block block_1
 material linear_elastic_steel
 solid mechanics use model elastic_plastic
 end parameters for block block_1

 begin parameters for block block_2
 material linear_elastic_steel
 solid mechanics use model elastic_plastic
 end parameters for block block_2

 begin parameters for block block_3
 material linear_elastic_steel
 solid mechanics use model elastic_plastic
 end parameters for block block_3

 begin parameters for block block_4
 material linear_elastic_lead
 solid mechanics use model elastic_plastic
 end parameters for block block_4

 end finite element model mesh1

At this point we have finished specifying physics-independent quantities. We now want to
set up the Presto procedure and region, along with the time control command block.
We start by defining the beginning of the procedure scope, the time control command
block, and the beginning of the region scope. Only one time stepping block

command block is needed for this analysis. The termination time is set to .

 begin presto procedure Apst_Procedure

 begin time control
 begin time stepping block p1
 start time = 0.0
 begin parameters for presto region presto
 time step scale factor = 1.0
 time step increase factor = 2.0
 step interval = 25
 end parameters for presto region presto
 end time stepping block p1

7 10 4–×
109

 termination time = 7.0e-4
 end time control

 begin presto region presto

Next we associate the finite element model we defined above (mesh1) with this presto
region.

 use finite element model mesh1

Now we define the boundary conditions on the problem. We prescribe the velocity on the
top surface of the box (nodelist_100) to crush the spheres, and we confine the bottom
surface of the box (nodelist_200) not to move. Note that although we use node sets to
define these boundary conditions, we could have used the corresponding side sets.

 begin prescribed velocity
 node set = nodelist_100
 direction = y_axis
 function = constant_velocity
 scale factor = -1.0
 end

 begin fixed displacement
 node set = nodelist_200
 components = Y
 end

Now we define the contact for this problem. For this problem, we want all four element
blocks to be able to contact each other, with a normal tolerance of 0.0001 and a tangential
tolerance of 0.0005. In this case, we simply define the same contact characteristics for all
interactions. However, we could also specify tolerances and kinematic partition factors for
individual interactions. Since no friction model is defined in the block below, the contact
defaults to frictionless contact.

 begin contact definition
 contact all blocks
 begin defaults
 normal tolerance = 0.0001
 tangential tolerance = 0.00005
 end
 end

Now we define what variables we want in the results output file, as well as how often we

want this file to be written. Here we request output files written every second of
analysis time. This will result in results output at one hundred time steps (plus the zero

time step) since the termination time is set to second. The output file will be
called crush_124_spheres.e, and it will be an Exodus II file (the database type command is
optional; it defaults to ExodusII). The variables we are requesting are the displacements
and reactions at the nodes, the stresses for the elements, the time-step increment, and the
kinetic energy.

 begin Results Output output_presto

7 10 6–×

7 10 4–×
110

 Database Name = crush_124_spheres.e
 Database Type = exodusII
 At Time 0.0, Increment = 7.0e-6
 nodal Variables = displacement as displ
 nodal Variables = reactions as react
 element Variables = stress
 global Variables = KineticEnergy as KE
 global Variables = timestep
 end

Now we end the presto region, presto procedure, and sierra blocks to complete the input
file.

 end presto region presto
 end presto procedure Apst_Procedure
end sierra crush_124_spheres

Here is the resulting full input file for this problem:

begin sierra crush_124_spheres
 begin definition for function constant_velocity
 type is piecewise linear
 ordinate is velocity
 abscissa is time
 begin values
 0.0 30.0
 1.0 30.0
 end values
 end definition for function constant_velocity
 define direction y_axis with vector 0.0 1.0 0.0

 begin property specification for material steel
 density = 7871.966988

 begin parameters for model elastic_plastic
 youngs modulus = 1.999479615e+11
 poissons ratio = 0.33333
 yield stress = 275790291.7
 hardening modulus = 275790291.7
 beta = 1.0
 end parameters for model elastic_plastic

 end property specification for material steel

 begin property specification for material lead
 density = 11253.30062

 begin parameters for model elastic_plastic
 youngs modulus = 1.378951459e+10
 poissons ratio = 0.44
 yield stress = 13789514.59
 hardening modulus = 0.0
 beta = 1.0
 end parameters for model elastic_plastic

 end property specification for material lead

 begin finite element model mesh1
111

 Database Name = crush_124_spheres.g
 Database Type = exodusII

 begin parameters for block block_1
 material linear_elastic_steel
 solid mechanics use model elastic_plastic
 end parameters for block block_1

 begin parameters for block block_2
 material linear_elastic_steel
 solid mechanics use model elastic_plastic
 end parameters for block block_2

 begin parameters for block block_3
 material linear_elastic_steel
 solid mechanics use model elastic_plastic
 end parameters for block block_3

 begin parameters for block block_4
 material linear_elastic_lead
 solid mechanics use model elastic_plastic
 end parameters for block block_4

 end finite element model mesh1

 begin presto procedure Apst_Procedure

 begin time control
 begin time stepping block p1
 start time = 0.0
 begin parameters for presto region presto
 time step scale factor = 1.0
 time step increase factor = 2.0
 step interval = 25
 end parameters for presto region presto
 end time stepping block p1

 termination time = 7.0e-4
 end time control

 begin presto region Apst_Region

 use finite element model mesh1

 begin prescribed velocity
 node set = nodelist_100
 direction = y_axis
 function = constant_velocity
 scale factor = -1.0
 end prescribed velocity

 begin fixed displacement
 node set = nodelist_200
 components = Y
 end fixed displacement

 begin contact definition
 contact all blocks
112

 begin defaults
 normal tolerance = 0.0001
 tangential tolerance = 0.00005
 end
 end

 begin Results Output output_presto
 Database Name = crush_124_spheres.e
 Database Type = exodusII
 At Time 0.0, Increment = 7.0e-6
 nodal Variables = displacement as displ
 nodal Variables = reactions as react
 element Variables = stress
 global Variables = KineticEnergy as KE
 global Variables = timestep
 end results output output_presto

 end presto region presto
 end presto procedure Apst_Procedure
end sierra crush_124_spheres
113

References

1. Edwards, H. C., and J. R. Stewart. “SIERRA: A Software Environment for
Developing Complex Multi-Physics Applications.” In First MIT Conference on
Computational Fluid and Solid Mechanics, edited by K. J. Bathe, 1147–1150.
Amsterdam: Elsevier, 2001.

2. Brown, K. H., R. M. Summers, M. W. Glass, A. S. Gullerud, M. W. Heinstein, and R.
E. Jones. ACME: Algorithms for Contact in a Multiphysics Environment, API
Version, 1.0. Albuquerque, NM: Sandia National Laboratories, October 2001.

3. Schoof, L. A., and V. R. Yarberry. EXODUS II: A Finite Element Data Model,
SAND92-2137. Albuquerque, NM: Sandia National Laboratories, September 1994.

4. Mitchell, J. A., A. S. Gullerud, W. M. Scherzinger, J. R. Koteras, and V. L. Porter.
“ADAGIO: Non-Linear Quasi-Static Structural Response Using the SIERRA
Framework.” In First MIT Conference on Computational Fluid and Solid Mechanics,
edited by K. J. Bathe, 361–364. Amsterdam: Elsevier, 2001.

5. Stone, C. M. SANTOS - A Two-Dimensional Finite Element Program for the
Quasistatic, Large Deformation, Inelastic Response of Solids, SAND90-0543.
Albuquerque, NM: Sandia National Laboratories, 1996.

6. Whirley, R. G., B. E. Engelmann, and J. O. Halquist. DYNA3D Users Manual.
Livermore, CA: Lawrence Livermore Laboratory, 1991.

7. Swegle, J. W. SIERRA: PRESTO Theory Documentation: Energy Dependent
Materials Version 1.0. Albuquerque, NM: Sandia National Laboratories, October
2001.

8. Taylor, L. M., and D. P. Flanagan. Pronto3D: A Three-Dimensional Transient Solid
Dynamics Program, SAND87-1912. Albuquerque, NM: Sandia National
Laboratories, March 1989.

9. Krieg, R. D. A Simple Constitutive Description for Cellular Concrete, SAND SC-DR-
72-0883. Albuquerque, NM: Sandia National Laboratories, 1978.

10. Swenson, D. V., and L. M. Taylor. “A Finite Element Model for the Analysis of
Tailored Pulse Stimulation of Boreholes.” International Journal for Numerical and
Analytical Methods in Geomechanics 7 (1983): 469–484.

11. Rashid, M. M. “Incremental Kinematics for Finite Element Applications.”
International Journal for Numerical Methods in Engineering 36 (1993): 3937–3956.

12. Key, S. W., M. W. Heinstein, C. M. Stone, F. J. Mello, M. L. Blanford, and K. G.
Budge. “A Suitable Low-Order, Tetrahedral Finite Element for Solids.” International
Journal for Numerical Methods in Engineering 44 (1999) 1785–1805.
114

13. Key, S. W., and C. C. Hoff. “An Improved Constant Membrane and Bending Stress
Shell Element for Explicit Transient Dynamics.” Computer Methods in Applied
Mechanics and Engineering 124, no. 1–2 (1995): 33–47.

14. Laursen, T. A., S. W. Attaway, and R. I. Zadoks. SEACAS Theory Manuals: Part III.
Finite Element Analysis in Nonlinear Solid Mechanics, SAND98-1760/3.
Albuquerque, NM: Sandia National Laboratories, 1999.

15. Flanagan, D. P., and T. Belytschko. “A Uniform Strain Hexahedron and Quadrilateral
with Orthogonal Hourglass Control.” International Journal for Numerical Methods in
Engineering 17 (1981): 679–706.

16. Brown, K. H., J. R. Koteras, D. B. Longcope, and T. L. Warren. CavityExpansion: A
Library for Cavity Expansion Algorithms, Version 1.0, in review. Albuquerque, NM:
Sandia National Laboratories, 2003.

17. Warren, T. L., and M. R. Tabbara. Spherical Cavity-Expansion Forcing Function in
Pronto3D for Application to Penetration Problems, SAND97-1174. Albuquerque,
NM: Sandia National Laboratories, May 1997.

18. Lysmer, J., and R. L. Kuhlmeyer. “Finite Dynamic Model for Infinite Media.” Journal
of the Engineering Mechanics Division, Proceedings of the American Society of Civil
Engineers (August 1979): 859–877.
115

Appendix A: Command Specification
This appendix gives all of the Presto commands in the proper scope.

Domain specification

BEGIN SIERRA <string>name

Title

TITLE = <string>title

Restart time

RESTART TIME = <real>restart_time
RESTART = AUTOMATIC

Function definition

BEGIN DEFINITION FOR FUNCTION <string>function_name
TYPE = <string>CONSTANT | PIECEWISE LINEAR
ABSCISSA = <string>abscissa_label
ORDINATE = <string>ordinate_label
BEGIN VALUES

<real>value_1 [<real>value_2
<real>value_3 <real>value_4
... <real>value_n]

END [VALUES]
END [DEFINITION FOR FUNCTION <string>function_name]

Definitions

DEFINE POINT <string>point_name WITH COORDINATES
<real>value_1 <real>value_2 <real>value_3

DEFINE DIRECTION <string>direction_name WITH VECTOR
<real>value_1 <real>value_2 <real>value_3

DEFINE AXIS <string>axis_name WITH POINT
<string>point_name DIRECTION <string>direction_name

DEFINE AXIS <string>axis_name WITH POINT
<string>point_1 POINT <string>point_2

Elastic material

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name
DENSITY = <real>density_value
BEGIN PARAMETERS FOR MODEL ELASTIC

YOUNGS MODULUS = <real>youngs_modulus
POISSONS RATIO = <real>poissons_ratio
SHEAR MODULUS = <real>shear_modulus
BULK MODULUS = <real>bulk_modulus
LAMBDA = <real>lambda

END [PARAMETERS FOR MODEL ELASTIC]
END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

Elastic-plastic material
116

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name
DENSITY = <real>density_value
BEGIN PARAMETERS FOR MODEL ELASTIC_PLASTIC

YOUNGS MODULUS = <real>youngs_modulus
POISSONS RATIO = <real>poissons_ratio
SHEAR MODULUS = <real>shear_modulus
BULK MODULUS = <real>bulk_modulus
LAMBDA = <real>lambda
YIELD STRESS = <real>yield_stress
HARDENING MODULUS = <real>hardening_modulus
BETA = <real>beta_parameter(1.0)

END [PARAMETERS FOR MODEL ELASTIC_PLASTIC]
END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

Elastic-plastic power-law hardening

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name
DENSITY = <real>density_value
BEGIN PARAMETERS FOR MODEL EP_POWER_HARD

YOUNGS MODULUS = <real>youngs_modulus
POISSONS RATIO = <real>poissons_ratio
SHEAR MODULUS = <real>shear_modulus
BULK MODULUS = <real>bulk_modulus
LAMBDA = <real>lambda
YIELD STRESS = <real>yield_stress
HARDENING CONSTANT = <real>hardening_constant
HARDENING EXPONENT = <real>hardening_exponent
LUDERS STRAIN = <real>luders_strain

END [PARAMETERS FOR MODEL EP_POWER_HARD]
END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

Soil and crushable foam

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name
DENSITY = <real>density_value
BEGIN PARAMETERS FOR MODEL SOIL_FOAM

YOUNGS MODULUS = <real>youngs_modulus
POISSONS RATIO = <real>poissons_ratio
SHEAR MODULUS = <real>shear_modulus
BULK MODULUS = <real>bulk_modulus
LAMBDA = <real>lambda
A0 = <real>const_coeff_yieldsurf
A1 = <real>lin_coeff_yieldsurf
A2 = <real>quad_coeff_yieldsurf
PRESSURE CUTOFF = <real>pressure_cutoff
PRESSURE FUNCTION = <string>function_press_volstrain

END [PARAMETERS FOR MODEL SOIL_FOAM]
END [PROPERTY SPECIFICIATION FOR MATERIAL <string>mat_name

Foam plasticity

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name
DENSITY = <real>density_value
BEGIN PARAMETERS FOR MODEL FOAM_PLASTICITY

YOUNGS MODULUS = <real>youngs_modulus
POISSONS RATIO = <real>poissons_ratio
SHEAR MODULUS = <real>shear_modulus
117

BULK MODULUS = <real>bulk_modulus
LAMBDA = <real>lambda
PHI = <real>phi
SHEAR STRENGTH = <real>shear_strength
SHEAR HARDENING = <real>shear_hardening
SHEAR EXPONENT = <real>shear_exponent
HYDRO STRENGTH = <real>hydro_strength
HYDRO HARDENING = <real>hydro_hardening
HYDRO EXPONENT = <real>hydro_exponent
BETA = <real>beta

END [PARAMETERS FOR MODEL FOAM_PLASTICITY]
END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

Orthotropic crush

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name
DENSITY = <real>density_value
BEGIN PARAMETERS FOR MODEL ORTHOTROPIC_CRUSH

YOUNGS MODULUS = <real>youngs_modulus
POISSONS RATIO = <real>poissons_ratio
SHEAR MODULUS = <real>shear_modulus
BULK MODULUS = <real>bulk_modulus
LAMBDA = <real>lambda
YIELD STRESS = <real>yield_stress
EX = <real>modulus_x
EY = <real>modulus_y
EZ = <real>modulus_z
GXY = <real>shear_modulus_xy
GYZ = <real>shear_modulus_yz
GZX = <real>shear_modulus_zx
VMIN = <real>min_crush_volume
CRUSH XX = <string>stress_strain_xx_function_name
CRUSH YY = <string>stress_strain_yy_function_name
CRUSH ZZ = <string>stress_strain_zz_function_name
CRUSH XY =

<string>shear_stress_strain_xy_function_name
CRUSH YZ =

<string>shear_stress_strain_yz_function_name
CRUSH ZX =

<string>shear_stress_strain_zx_function_name
END [PARAMETERS FOR MODEL ORTHOTROPIC_CRUSH]

END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

Orthotropic rate

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name
DENSITY = <real>density_value
BEGIN PARAMETERS FOR MODEL ORTHOTROPIC_RATE

YOUNGS MODULUS = <real>youngs_modulus
YIELD STRESS = <real>yield_stress
MODULUS TTTT = <real>modulus_tttt
MODULUS TTLL = <real>modulus_ttll
MODULUS TTWW = <real>modulus_ttww
MODULUS LLLL = <real>modulus_llll
MODULUS LLWW = <real>modulus_llww
MODULUS WWWW = <real>modulus_wwww
MODULUS TLTL = <real>modulus_tltl
MODULUS LWLW = <real>modulus_lwlw
118

MODULUS WTWT = <real>modulus_wtwt
TX = <real>tx
TY = <real>ty
TZ = <real>tz
LX = <real>lx
LY = <real>ly
LZ = <real>lz
MODULUS FUNCTION = <string>modulus_function_name
RATE FUNCTION = <string>rate_function_name
T FUNCTION = <string>t_function_name
L FUNCTION = <string>l_function_name
W FUNCTION = <string>w_function_name
TL FUNCTION = <string>tl_function_name
LW FUNCTION = <string>lw_function_name
WT FUNCTION = <string>wt_function_name

END [PARAMETERS FOR MODEL ORTHOTROPIC_RATE]
END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

#Mie-Gruneisen Model

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name
BEGIN PARAMETERS FOR MODEL MIE_GRUNEISEN

RHO_0 = <real>density
C_0 = <real>sound_speed
SHUG = <real>const_shock_velocity
GAMMA_0 = <real>ambient_gruneisen_param
POISSR = <real>poissons_ratio
Y_0 = <real>yield_strength
PMIN = <real>mean_stress(REAL_MAX)

END [PARAMETERS FOR MODEL MIE_GRUNEISEN]
END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

Mie-Gruneisen Power Series Model

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name
BEGIN PARAMETERS FOR MODEL MIE_GRUNEISEN_POWER_SERIES

RHO_0 = <real>density
C_0 = <real>sound_speed
K1 = <real>power_series_coeff1
K2 = <real>power_series_coeff2
K3 = <real>power_series_coeff3
K4 = <real>power_series_coeff4
K5 = <real>power_series_coeff5
GAMMA_0 = <real>ambient_gruneisen_param
POISSR = <real>poissons_ratio
Y_0 = <real>yield strength
PMIN = <real>mean_stress(REAL_MAX)

END [PARAMETERS FOR MODEL MIE_GRUNEISEN_POWER_SERIES]
END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

JWL (Jones-Wilkins-Lee) Model

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name
BEGIN PARAMETERS FOR MODEL JWL

RHO_0 = <real>initial_density
D = <real>detonation_velocity
E_0 = <real>init_chem_energy
A = <real>jwl_const_pressure1
119

B = <real>jwl_const_pressure2
R1 = <real>jwl_const_nondim1
R2 = <real>jwl_const_nondim2
OMEGA = <real>jwl_const_nondim3
XDET = <real>x_detonation_point
YDET = <real>y_detonation_point
ZDET = <real>z_detonation_point
TDET = <real>time_of_detonation
B5 = <real>burn_width_const(2.5)

END [PARAMETERS FOR MODEL JWL]
END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

Ideal Gas Model

BEGIN PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name
BEGIN PARAMETERS FOR MODEL IDEAL_GAS

RHO_0 = <real>initial_density
C_0 = <real>initial_sound_speed
GAMMA = <real>ratio_specific_heats

END [PARAMETERS FOR MODEL IDEAL_GAS]
END [PROPERTY SPECIFICATION FOR MATERIAL <string>mat_name]

Define mesh

BEGIN FINITE ELEMENT MODEL <string>mesh_descriptor
DATABASE NAME = <string>mesh_file_name
DATABASE TYPE = <string>database_type(exodusII)
ALIAS <string>mesh_identifier AS <string>user_name
BEGIN PARAMETERS FOR BLOCK <string>block_name

MATERIAL <string>material_name
SOLID MECHANICS USE MODEL <string>model_name
ELEMENT STRAIN FORMULATION = <string>midpoint|

strongly-objective(midpoint)
LINEAR BULK VISCOSITY =

<real>linear_bulk_viscosity_value(0.06)
QUADRATIC BULK VISCOSITY =

<real>quad_bulk_viscosity_value(1.20)
HEX HOURGLASS STIFFNESS =

<real>hour_glass_stiff_value(0.05)
HEX HOURGLASS VISCOSITY =

<real>hour_glass_visc_value(0.0)
MEMBRANE SCALE THICKNESS =

<real>mem_scale_thick_value
SHELL SCALE THICKNESS = <real>shell_scale_thick_value
SHELL INTEGRATION POINTS =

<integer>number_integration_points(5)
SHELL INTEGRATION SCHEME = <string>GAUSS|LOBATTO|

TRAPEZOID(TRAPEZOID)
TRUSS AREA = <real>truss_cross_sectional_area
SOLID MECHANICS TEMPERATURE INITIAL =

<real>init_temp_value
SOLID MECHANICS TEMPERATURE FUNCTION =

<string>defined_function
DEPOSIT SPECIFIC INTERNAL ENERGY <real>edep

OVER TIME tdep STARTING AT TIME tinit
ELEMENT NUMERICAL FORMULATION = old | new (old)
DEACTIVE = <string>code_name

END [PARAMETERS FOR BLOCK <string>block_name]
120

END [FINITE ELEMENT MODEL <string>mesh_descriptor]

Begin Procedure scope

BEGIN PRESTO PROCEDURE <string>procedure_name

Time block

BEGIN TIME CONTROL
BEGIN TIME STEPPING BLOCK <string>time_block_name

START TIME = <real>start_time_value
BEGIN PARAMETERS FOR PRESTO REGION

<string>region_name
INITIAL TIME STEP = <real>initial_time_step_value
TIME STEP SCALE FACTOR =
<real>time_step_scale_factor(1.0)
TIME STEP INCREASE FACTOR =
<real>time_step_increase_factor(1.1)
STEP INTERVAL = <integer>nsteps(100)

END [PARAMETERS FOR PRESTO REGION
<string>region_name

END [TIME STEPPING BLOCK <string>time_block_name]

TERMINATION TIME = <real>termination_time

END TIME CONTROL

Begin Region scope

BEGIN PRESTO REGION <string>region_specification

USE FINITE ELEMENT MODEL <string>model_name

Boundary conditions

BEGIN FIXED DISPLACEMENT
SURFACE = <string list>surface_names |

NODE SET = <string list>nodelist_names
COMPONENTS = <string>X/Y/Z

END [FIXED DISPLACEMENT]

BEGIN PRESCRIBED DISPLACEMENT
SURFACE = <string list>surface_names |

NODE SET = <string list>nodelist_names
DIRECTION = <string>defined_direction |

COMPONENT = <string>X|Y|Z
FUNCTION = <string>function_name
SCALE FACTOR = <real>scale_factor(1.0)

END [PRESCRIBED DISPLACEMENT]

BEGIN PRESCRIBED VELOCITY
SURFACE = <string list>surface_names |

NODE SET = <string list>nodelist_names
DIRECTION = <string>defined_direction |

COMPONENT = <string>X|Y|Z |
CYLINDRICAL AXIS = <string>defined_axis |
RADIAL AXIS = <string>defined_axis

FUNCTION = <string>function_name
121

SCALE FACTOR = <real>scale_factor(1.0)
END [PRESCRIBED VELOCITY]

BEGIN PRESCRIBED ACCELERATION
SURFACE = <string list>surface_names |

NODE SET = <string list>nodelist_names
DIRECTION = <string>defined_direction |

COMPONENT = <string>X|Y|Z
FUNCTION = <string>function_name
SCALE FACTOR = <real>scale_factor(1.0)

END [PRESCRIBED ACCELERATION]

BEGIN FIXED ROTATION
SURFACE = <string list>surface_names |

NODE SET = <string list>nodelist_names
COMPONENTS = <string>X/Y/Z

END [FIXED ROTATION]

BEGIN PRESCRIBED ROTATION
SURFACE = <string list>surface_names |

NODE SET = <string list>nodelist_names
DIRECTION = <string>defined_direction |

COMPONENT = <string>X|Y|Z
FUNCTION = <string>function_name
SCALE FACTOR = <real>scale_factor(1.0)

END [PRESCRIBED ROTATION]

BEGIN INITIAL VELOCITY
BLOCK = <string list>block_names
DIRECTION = <string>defined_direction
MAGNITUDE = <real>magnitude_of_velocity

END [INITIAL VELOCITY]

BEGIN INITIAL VELOCITY
BLOCK = <string list>block_names
CYLINDRICAL AXIS = <string>defined_cylindrical_axis
ANGULAR VELOCITY = <real>angular_velocity

END [INITIAL VELOCITY]

BEGIN PRESSURE
SURFACE = <string list>surface_names
FUNCTION = <string>function_name
SCALE FACTOR = <real>scale_factor(1.0)

END [PRESSURE]

BEGIN PRESCRIBED FORCE
SURFACE = <string list>surface_names |

NODE SET = <string list>nodelist_names
DIRECTION = <string>defined_direction |

COMPONENT = <string>X|Y|Z
FUNCTION = <string>function_name
SCALE FACTOR = <real>scale_factor(1.0)

END [PRESCRIBED FORCE]

BEGIN PRESCRIBED MOMENT
SURFACE = <string list>surface_names |

NODE SET = <string list>nodelist_names
DIRECTION = <string>defined_direction |
122

COMPONENT = <string>X|Y|Z
FUNCTION = <string>function_name
SCALE FACTOR = <real>scale_factor(1.0)

END [PRESCRIBED MOMENT]

Specialized boundary conditions

BEGIN GRAVITY
DIRECTION = <string>defined_direction
FUNCTION = <string>function_name
SCALE FACTOR = <real>scale_factor(1.0)
GRAVITATIONAL CONSTANT = <real>g_constant

END [GRAVITY]

BEGIN CAVITY EXPANSION
SURFACE = <string>surface_name
EXPANSION RADIUS = <string>spherical|

cylindrical(spherical)
TARGET NORMAL = <string>X|Y|Z
FREE SURFACE = <real>upper_surface

<real>lower_surface
LAYER SURFACE = <real>upper_layer <real>lower_layer
PRESSURE COEFFICIENTS =

<real>coeff1 <real>coeff2 <real>coeff3
NODE SETS TO DEFINE BODY AXIS =

<string>nodelist_id1 <string>nodelist_id2
TIP RADIUS = <real>tip_radius

END [CAVITY EXPANSION]

BEGIN PERIODIC
NODE SETS = <string>nodelist_id1

<string>nodelist_id2 |
SURFACES = <string>surface_id1
 <string>surface_id2

SEARCH TOLERANCE = <real>search_tolerance(1.0e-4)
PRESCRIBED QUANTITY =

<string>DISPLACEMENT|VELOCITY|FORCE
COMPONENT = <string>X|Y|Z |

RADIAL AXIS = <string>defined_radial_axis
FUNCTION = <string>function_name
SCALE FACTOR = <real>scale_factor(1.0)
THETA = <real>theta_value>

END [PERIODIC]

BEGIN SILENT BOUNDARY
SURFACE = <string>surface_name

END [SILENT BOUNDARY]

BEGIN SPOT WELD
NODE SET = <string>nodelist_id
SURFACE = <surface>surface_id
NORMAL DISPLACEMENT FUNCTION =

<string>function_nor_disp
NORMAL DISPLACEMENT SCALE FACTOR =

<real>scale_nor_disp
TANGENTIAL DISPLACEMENT FUNCTION =

<string>function_tang_disp
TANGENTIAL DISPLACEMENT SCALE FACTOR =
123

<real>scale_tang_disp
FAILURE ENVELOPE EXPONENT = <real>exponent
FAILURE DECAY CYCLES = <integer>number_decay_cycles

END [SPOT WELD]

Constraints

BEGIN CONSTRAINT CONSTANT DISTANCE
NODE SETS = <string list>nodelist_id1 nodelist_id2
SEARCH TOLERANCE = <real>search_tol(0.0001)

END [CONSTRAINT CONSTANT DISTANCE]

BEGIN CONSTRAINT HEX SHELL <string>constraint_name
HEX SHELL BLOCK = <string>hexshell_block_id
EXCLUDE SURFACE = <string>surface_id

END [CONSTRAINT HEX SHELL <string>contraint_name]

Mass property calculations

BEGIN MASS PROPERTIES
BLOCK = <string>block_id1 <string>block_id2 ...
STRUCTURE NAME = <string>structure_name

END [MASS PROPERTIES]

Contact

BEGIN CONTACT DEFINITION <string>block_name
CONTACT SURFACE <string>name

CONTAINS <string list>surfaces
CONTACT ALL BLOCKS
REMOVE INITIAL OVERLAP
MULTIPLE INTERACTIONS WITH ANGLE

<real>angle(60.0)
NUMBER OF ITERATIONS

<integer>number_enforce_iter(5)
BEGIN FRICTIONLESS MODEL <string>name
END [FRICTIONLESS MODEL <string>name]
BEGIN CONSTANT FRICTION MODEL <string>name

FRICTION COEFFICIENT = <real>coeff
END [CONTACT FRICTION MODEL <string>name]
BEGIN TIED MODEL <string>name
END [TIED MODEL <string>name]
BEGIN ANALYTIC PLANE [<string>name]

NORMAL = <string>defined_direction
POINT = <string>defined_point

END [ANALYTIC PLANE <string>name]
BEGIN ANALYTIC CYLINDER [<string>name]

CENTER = <string>defined_point
AXIAL DIRECTION = <string>defined_axis
RADIUS = <real>cylinder_radius
LENGTH = <real>cylinder_length
CONTACT NORMAL = <string>OUTSIDE|INSIDE

END [ANALYTIC CYLINDER <string>name]
BEGIN ANALYTIC SPHERE [<string>name]

CENTER = <string>defined_point
RADIUS = <real>sphere_radius

END [ANALYTIC SPHERE <string>name]
BEGIN DEFAULTS [<string>name]
124

NORMAL TOLERANCE = <real>norm_tol
TANGENTIAL TOLERANCE = <real>tang_tol
OVERLAP NORMAL TOLERANCE = <real>norm_tol
OVERLAP TANGENTIAL TOLERANCE = <real>tang_tol
FRICTION MODEL = <string>name
AUTOMATIC KINEMATIC PARTITION

END [DEFAULTS <string>name]
BEGIN INTERACTION [<string>name]

MASTER = <string>surface
SLAVE = <string>surface
SURFACES = <string>surface1 <string>surface2
KINEMATIC PARTITION = <real>kin_part
NORMAL TOLERANCE = <real>norm_tol
TANGENTIAL TOLERANCE = <real>tang_tol
OVERLAP NORMAL TOLERANCE = <real>norm_tol
OVERLAP TANGENTIAL TOLERANCE = <real>tang_tol
FRICTION MODEL = <string>name
AUTOMATIC KINEMATIC PARTITION

END [INTERACTION <string>name]
END [CONTACT DEFINITION <string>block_name]

Results specification

BEGIN RESULTS OUTPUT <string>results_name
DATABASE NAME = <string>results_file_name
DATABASE TYPE =

<string>database_type(exodusII)
NODE VARIABLES = <string>variable_name

[AS <string>dbase_variable_name
<string>variable_name AS
<string>dbase_variable_name ...]

NODAL VARIABLES = <string>variable_name
[AS <string>dbase_variable_name
<string>variable_name AS
<string>dbase_variable_name ...]

ELEMENT VARIABLES = <string>variable_name
[AS <string>dbase_variable_name
<string>variable_name AS
<string>dbase_variable_name ...]

GLOBAL VARIABLES = <string>variable_name
[AS <string>dbase_variable_name
<string>variable_name AS
<string>dbase_variable_name ...]

START TIME = <real>output_start_time
TIMESTEP ADJUSTMENT INTERVAL = <integer>steps
AT TIME <real>time_begin INCREMENT =

<real>time_increment_dt
ADDITIONAL TIMES = <real>output_time1

<real>output_time2 ...
AT STEP <integer>step_begin INCREMENT =

<integer>step_increment
ADDITIONAL STEPS = <integer>output_step1

<integer>output_step2 ...
TERMINATION TIME = <real>termination_time_value

END [RESULTS OUTPUT <string>results_name]

History specification
125

BEGIN HISTORY OUTPUT <string>history_name
DATABASE NAME = <string>history_file_name
DATABASE TYPE =

<string>database_type(exodusII)
VARIABLE = <string>entity_type

<string>internal_name
AT <string>entity_type <integer>entity_id
[AS <string>history_variable_name]

VARIABLE = <string>entity_type_global
<string>internal_name
[AS <string>history_variable_name]

START TIME = <real>output_start_time
TIMESTEP ADJUSTMENT INTERVAL = <integer>steps
AT TIME <real>time_begin INCREMENT =

<real>time_increment_dt
ADDITIONAL TIMES = <real>output_time1

<real>output_time2 ...
AT STEP <integer>step_begin INCREMENT =

<integer>step_increment
ADDITIONAL STEPS = <integer>output_step1

<integer>output_step2 ...
TERMINATION TIME = <real>termination_time_value

END [HISTORY OUTPUT <string>history_name]

Restart specification

BEGIN RESTART DATA <string>restart_name
DATABASE NAME = <string>restart_file
INPUT DATABASE NAME = <string>restart_input_file
OUTPUT DATABASE NAME =

<string>restart_output_file
DATABASE TYPE =

<string>database_type(exodusII)
START TIME = <real>restart_start_time
TIMESTEP ADJUSTMENT INTERVAL = <integer>steps
AT TIME <real>time_begin INCREMENT =

<real>time_increment_dt
ADDITIONAL TIMES = <real>output_time1

<real>output_time2 ...
AT STEP <integer>step_begin INCREMENT =

<integer>step_increment
ADDITIONAL STEPS = <integer>output_step1

<integer>output_step2 ...
TERMINATION TIME = <real>termination_time_value

END [RESTART DATA <string>restart_name]

END [PRESTO REGION <string>region_name]

END [PRESTO PROCEDURE <string>procedure_name]

END [SIERRA <string>name]
126

Appendix B: Registered Variables
This appendix contains the registered variables that the user can select as output to the
results file. The registered variables are presented in tables based on use, as follows:

- Table B.1 Variables Registered on Nodes (Variable and Type)

- Table B.2 Element Variables Registered for Energy-Dependent (“Equation-of-
State”) Elements

- Table B.3 Element Variables Registered for Solid Elements

- Table B.4 Element Variables Registered for Membranes

- Table B.5 Nodal Variables Registered for Shells

- Table B.6 Element Variables Registered for Shells

- Table B.7 Element Variables Registered for Truss

- Table B.8 Global Registered Variables

The tables provide the following information about each registered variable:

Variable Name. This is the string that will appear on the NODE VARIABLES or
ELEMENT VARIABLES command line.

Type. This is the variable’s type. The types are tReal, tVec3D, tSym33, and
tFull36. The type tReal indicates the registered variable is a real. The type
tVec3D indicates the registered variable is a three-dimensional vector. For a three-
dimensional vector, the variable quantities will be output with suffixes of _X, _Y, and
_Z. For example, if the registered variable displacement is requested to be output
as displ, the components of the displacement vector on the results file will be
displ_x, displ_y, and displ_z. The type tSym33 (or tSymTen33) indicates the
registered variable is a symmetric 3 × 3 tensor. For a 3 × 3 symmetric tensor, the
variable quantities will be output with suffixes of _xx, _yy, _zz, _xy, _yz, and _zx.
For example, if the registered variable rotated_stress is requested for output as
stress, the components of the stress tensor on the results file will be stress_xx,
stress_yy, stress_zz, stress_xy, stress_yz, and stress_zx. The type
tFull36 is a full 3 × 3 tensor with three diagonal terms and six off-diagonal terms.

State Specification. It is possible to output the state variables from the material
models, but the implementation of this feature is not complete at this time. Work is
under way to improve the method for output of the state variables. For the elastic
material model, there are no state variables. The state variables for the orthotropic
crush model and the energy-dependent models (Mie-Gruneisen, Mie-Gruneisen
Power-Series, JWL, and ideal gas) are accessed as any other registered variables. To
get the state variables for the elastic-plastic (elastic_plastic), elastic-plastic
power-law hardening (ep_power_hard), foam plasticity (foam_plasticity), and
orthotropic rate (orthotropic_rate) material models, you should use the
127

ELEMENT VARIABLES command line in the RESULTS OUTPUT command block in
the form

ELEMENT VARIABLES = state_variables_”material_id” .

For example, if you wanted to get the state variables for the elastic-plastic power-law
hardening material model, you would use

ELEMENT VARIABLES = state_variables_ep_power_hard .

The above command will output all of the state variables for the elastic-plastic power-
law hardening material model. You will have to consult with William Scherzinger
(wmscher@sandia.gov) to get the current ordering for the state variables.

For more information about the output of state variables, contact Richard Koteras
(jrkoter@sandia.gov), Arne Gullerud (asgulle@sandia.gov), or William Scherzinger
(wmscher@sandia.gov).

Comments. Additional information may be provided to help the user select the
registered variable.

The tables of registered variables follow.

Table B.1. Variables Registered on Nodes (Variable and Type)

Variable Name Type
State

Specification
Comments

reactions tVec3D temporary

moment_reactions tVec3D temporary

model_coordinates tVec3D model

coordinates tVec3D temporary

displacement tVec3D state

displacement_increment tVec3D temporary

velocity tVec3D state

acceleration tVec3D state

force_internal tVec3D state

force_external tVec3D state

force_hourglass tVec3D state

mass tReal model

force_contact tVec3D state
128

moment_reactions tVec3D temporary

Table B.2. Element Variables Registered for Energy-Dependent
(“Equation-of-State”) Elements

Variable Name Type
State

Specification
Comments

stress tSym33 state

stretch tSym33 persistent

rotation tFull36 state

element_density Real state

sound_speed tReal state

specific_internal_energy tReal state

artificial_viscosity tReal state

element_mass tReal model

volume tReal temporary

shrmod tReal temporary

dilmod tReal temporary

rotated_stress tSym33 temporary

stress tSym33 state

Table B.3. Element Variables Registered for Solid Elements

Variable Name Type
State

Specification
Comments

stress tSym33 state

stretch tSym33 persistent

rotation tFull36 state

Table B.1. Variables Registered on Nodes (Variable and Type) (Continued)

Variable Name Type
State

Specification
Comments
129

element_mass tReal model

volume tReal temporary

shrmod tReal temporary

dilmod tReal temporary

rotated_stress tSym33 temporary

stress tSym33 state

Table B.4. Element Variables Registered for Membranes

Variable Name Type
State

Specification
Comments

memb_stress tSym33 temporary

element_area tReal state

element_thickness tReal state

element_mass tReal model

Table B.5. Nodal Variables Registered for Shells

Variable Name Type
State

Specification
Comments

rotational_displacement tVec3D state

rotational_velocity tVec3D state

rotational_acceleration tVec3D state

moment_internal tVec3D state

moment_external tVec3D state

rotational_mass tReal temporary

Table B.3. Element Variables Registered for Solid Elements (Continued)

Variable Name Type
State

Specification
Comments
130

Table B.6. Element Variables Registered for Shells

Variable Name Type
State

Specification
Comments

memb_stress tSymTen33 temporary

bottom_stress tSymTen33 temporary

top_stress tSymTen33 temporary

element_area tReal state

element_thickness tReal state

element_mass tReal model

Table B.7. Element Variables Registered for Truss

Variable Name Type
State

Specification
Comments

truss_init_length tReal model

truss_stretch tReal persistent

truss_stress tReal state

truss_strain_incr tReal state

element_mass tReal model

Table B.8. Global Registered Variables

Variable Name Type
State

Specification
Comments

timestep tReal temporary

KineticEnergy tReal temporary
131

Index

This index lists the command blocks and command lines in Presto. In general, single-level
entries identify the page where the command syntax appears, with discussion following
soon thereafter—on the same page or on a subsequent page. Page ranges are not provided
in this index. Some entries consist of two or more levels. Such entries are typically based
on context, including such information as the command blocks in which a command line
appears, the location of the discussion related to a particular command line, and tips on
usage. The PDF version of this document contains hyperlinked entries from the page
numbers listed in this index to the text in the body of the document. Information in
appendices is not included in this index.
A
A

in JWL material model 46
A0

in Soil and Crushable Foam material model 36
A1

in Soil and Crushable Foam material model 36
A2

in Soil and Crushable Foam material model 36
ABSCISSA 29
ADDITIONAL STEPS

in History Output 100
description of 103

in Restart Data 104
description of 106

in Results Output 95
description of 99

ADDITIONAL TIMES
in History Output 100

description of 102
in Restart Data 104

description of 106
in Results Output 95

description of 98
ALIAS 49
ANALYTIC CYLINDER

in Contact Definition 82
about 86
description of 87

ANALYTIC PLANE
in Contact Definition 82

about 86
description of 86

ANALYTIC SPHERE
in Contact Definition 82

about 86
description of 88

ANGULAR VELOCITY
in Initial Velocity

for angular velocity 67
AT STEP

in History Output 100
description of 103

in Restart Data 104
description of 106

in Results Output 95
description of 98

AT TIME
in History Output 100

description of 102
in Restart Data 104

description of 106
in Results Output 95

description of 98
AUTOMATIC KINEMATIC PARTITION

in Contact Definition
in Defaults 82, 88

description of 91
in Interaction 83, 91

AXIAL DIRECTION
in Contact Definition

in Analytic Cylinder 82
description of 87

B
B

in JWL material model 46
B5

in JWL material model 46
BETA

in Elastic-Plastic material model 34
in Foam Plasticity material model 38

BLOCK 80
in Initial Velocity 67

for angular velocity 67
for direction 67

BULK MODULUS
in Elastic material model 33
in Elastic-Plastic material model 34
in Elastic-Plastic Power-Law Hardening material

model 35
in Foam Plasticity material model 38
in Orthotropic Crush material model 40
in Orthotropic Rate material model 42
in Soil and Crushable Foam material model 36
132

C
C_0

in Ideal Gas material model 47
in Mie-Gruneisen material model 44
in Mie-Gruneisen Power-Series material model 45

CAVITY EXPANSION 71
CENTER

in Contact Definition
in Analytic Cylinder 82

description of 87
in Analytic Sphere 82

description of 88
COMPONENT

for Periodic boundary condition 73
for Prescribed Acceleration boundary condition 65
for Prescribed Displacement boundary condition 63
for Prescribed Force boundary condition 69
for Prescribed Moment boundary condition 70
for Prescribed Rotation boundary condition 66
for Prescribed Velocity boundary condition 64

COMPONENTS
for Fixed Displacement boundary condition 63
for Fixed Rotation boundary condition 65

CONSTANT FRICTION MODEL
in Contact Definition 82

about 85
description of 86

CONSTRAINT CONSTANT DISTANCE 78
CONSTRAINT HEX SHELL 78
CONTACT ALL BLOCKS

in Contact Definition 82
description of 84
use of 83

CONTACT DEFINITION 82
example of 93
use of 83

CONTACT NORMAL
in Contact Definition

in Analytic Cylinder 82
description of 87

CONTACT SURFACE
in Contact Definition 82

description of 83
use of 83, 84

CRUSH XX
in Orthotropic Crush material model 40

CRUSH XY
in Orthotropic Crush material model 40

CRUSH YY
in Orthotropic Crush material model 40

CRUSH YZ
in Orthotropic Crush material model 40

CRUSH ZX
in Orthotropic Crush material model 40

CRUSH ZZ
in Orthotropic Crush material model 40

CYLINDRICAL AXIS
for Prescribed Velocity boundary condition 64
in Initial Velocity

for angular velocity 67

D
D

in JWL material model 46
DAMPER AREA 54
DATABASE NAME 49

in History Output 100
in Restart Data 104
in Results Output 95

DATABASE TYPE 49
in History Output 100
in Restart Data 104
in Results Output 95

DEACTIVATE 56
DEFAULTS

in Contact Definition 82
about 81
description of 88

DEFINE AXIS WITH POINT DIRECTION 30
DEFINE AXIS WITH POINT POINT 30
DEFINE DIRECTION 30
DEFINE POINT 15, 30
DEFINITION FOR FUNCTION 29
DENSITY

in Elastic material model 33
in Elastic-Plastic material model 34
in Elastic-Plastic Power-Law Hardening material

model 35
in Foam Plasticity material model 38
in Orthotropic Crush material model 40
in Orthotropic Rate material model 42
in Soil and Crushable Foam material model 36

DEPOSIT SPECIFIC INTERNAL ENERGY 54
DIRECTION

for Gravity boundary condition 71
for Prescribed Acceleration boundary condition 65
for Prescribed Displacement boundary condition 63
for Prescribed Force boundary condition 69
for Prescribed Moment boundary condition 70
for Prescribed Rotation boundary condition 66
for Prescribed Velocity boundary condition 64
in Initial Velocity

for direction 67

E
E_0

in JWL material model 46
ELEMENT NUMERICAL FORMULATION 55
ELEMENT STRAIN FORMULATION 52
ELEMENT VARIABLES

in Results Output 95
description of 97

EX
in Orthotropic Crush material model 40

EXCLUDE SURFACE 78
EXPANSION RADIUS

for Cavity Expansion boundary condition 71
EY

in Orthotropic Crush material model 40
EZ

in Orthotropic Crush material model 40
133

F
FAILURE DECAY CYCLES

for Spot-Weld boundary condition 75
FAILURE ENVELOPE EXPONENT

for Spot-Weld boundary condition 75
FINITE ELEMENT MODEL 49
FIXED DISPLACEMENT 63
FIXED ROTATION 65
FREE SURFACE

for Cavity Expansion boundary condition 71
FREE SURFACE EFFECT COEFFICIENTS

for Cavity Expansion boundary condition 71
FRICTION COEFFICIENT

in Contact Definition
in Constant Friction Model 82

description of 86
FRICTION MODEL

in Contact Definition
in Defaults 82, 88

description of 90
in Interaction 82, 91

FRICTIONLESS MODEL
in Contact Definition 82

about 85
description of 86

FUNCTION
for Gravity boundary condition 71
for Periodic boundary condition 73
for Prescribed Acceleration boundary condition 65
for Prescribed Displacement boundary condition 63
for Prescribed Force boundary condition 69
for Prescribed Moment boundary condition 70
for Prescribed Rotation boundary condition 66
for Prescribed Velocity boundary condition 64
for Pressure boundary condition 69

G
GAMMA

in Ideal Gas material model 47
GAMMA_0

in Mie-Gruneisen material model 44
in Mie-Gruneisen Power-Series material model 45

GLOBAL VARIABLES
in Results Output 95

description of 97
GRAVITATIONAL CONSTANT

for Gravity boundary condition 71
GRAVITY 71
GXY

in Orthotropic Crush material model 40
GYZ

in Orthotropic Crush material model 40
GZX

in Orthotropic Crush material model 40

H
HARDENING CONSTANT

in Elastic-Plastic Power-Law Hardening material
model 35

HARDENING EXPONENT

in Elastic-Plastic Power-Law Hardening material
model 35

HARDENING MODULUS
in Elastic-Plastic material model 34

HEX HOURGLASS STIFFNESS 52
HEX HOURGLASS VISCOSITY 52
HEX SHELL BLOCK 78
HISTORY OUTPUT 100
HYDRO EXPONENT

in Foam Plasticity material model 38
HYDRO HARDENING

in Foam Plasticity material model 38
HYDRO STRENGTH

in Foam Plasticity material model 38

I
INITIAL TIME STEP 59

in Parameters for Presto Region 59
INITIAL VELOCITY

about 67
for angular velocity 67
for direction 67

INPUT DATABASE NAME
in Restart Data 104

INTERACTION
in Contact Definition 82

about 81
description of 91

K
K1

in Mie-Gruneisen Power-Series material model 45
K2

in Mie-Gruneisen Power-Series material model 45
K3

in Mie-Gruneisen Power-Series material model 45
K4

in Mie-Gruneisen Power-Series material model 45
K5

in Mie-Gruneisen Power-Series material model 45
KINEMATIC PARTITION

in Contact Definition
in Interaction 82, 91

description of 93

L
L FUNCTION

in Orthotropic Rate material model 42
LAMBDA

in Elastic material model 33
in Elastic-Plastic material model 34
in Elastic-Plastic Power-Law Hardening material

model 35
in Foam Plasticity material model 38
in Orthotropic Crush material model 40
in Orthotropic Rate material model 42
in Soil and Crushable Foam material model 36

LAYER SURFACE
for Cavity Expansion boundary condition 71

LENGTH
134

in Contact Definition
in Analytic Cylinder 82

description of 87
LINEAR BULK VISCOSITY 52
LUDERS STRAIN

in Elastic-Plastic Power-Law Hardening material
model 35

LW FUNCTION
in Orthotropic Rate material model 42

LX
in Orthotropic Rate material model 42

LY
in Orthotropic Rate material model 42

LZ
in Orthotropic Rate material model 42

M
MAGNITUDE

in Initial Velocity
for direction 67

MASS PROPERTIES 80
MASTER

in Contact Definition
in Interaction 82, 91

description of 92
MATERIAL 51
MEMBRANE SCALE THICKNESS 52
MODULUS FUNCTION

in Orthotropic Rate material model 42
MODULUS LLLL

in Orthotropic Rate material model 42
MODULUS LLWW

in Orthotropic Rate material model 42
MODULUS LWLW

in Orthotropic Rate material model 42
MODULUS TLTL

in Orthotropic Rate material model 42
MODULUS TTLL

in Orthotropic Rate material model 42
MODULUS TTTT

in Orthotropic Rate material model 42
MODULUS TTWW

in Orthotropic Rate material model 42
MODULUS WTWT

in Orthotropic Rate material model 42
MODULUS WWWW

in Orthotropic Rate material model 42
MULTIPLE INTERACTIONS WITH ANGLE

in Contact Definition 82
description of 85

N
NODAL VARIABLES

in Results Output 95
description of 96

NODE SET
for Fixed Displacement boundary condition 63
for Fixed Rotation boundary condition 65
for Prescribed Acceleration boundary condition 65
for Prescribed Displacement boundary condition 63

for Prescribed Force boundary condition 69
for Prescribed Moment boundary condition 70
for Prescribed Rotation boundary condition 66
for Prescribed Velocity boundary condition 64
for Spot-Weld boundary condition 75

NODE SETS 78
for Periodic boundary condition 73

NODE SETS TO DEFINE BODY AXIS
for Cavity Expansion boundary condition 71

NODE VARIABLES
in Results Output 95

description of 96
NORMAL

in Contact Definition
in Analytic Plane 82

description of 86
NORMAL DISPLACEMENT FUNCTION

for Spot-Weld boundary condition 75
NORMAL DISPLACEMENT SCALE FACTOR

for Spot-Weld boundary condition 75
NORMAL TOLERANCE

in Contact Definition
in Defaults 82, 88

description of 89
in Interaction 82, 91

NUMBER OF ITERATIONS
in Contact Definition 82

description of 85

O
OMEGA

in JWL material model 46
ORDINATE 29
OUTPUT DATABASE NAME

in Restart Data 104
OVERLAP NORMAL TOLERANCE

in Contact Definition
in Defaults 82, 88

description of 90
in Interaction 82, 91

OVERLAP TANGENTIAL TOLERANCE
in Contact Definition

in Defaults 82, 88
description of 90

in Interaction 82, 91

P
PARAMETERS FOR BLOCK 49

about 50
PARAMETERS FOR MODEL ELASTIC

in Elastic material model 33
PARAMETERS FOR MODEL ELASTIC PLASTIC

in Elastic-Plastic material model 34
PARAMETERS FOR MODEL EP_POWER_HARD

in Elastic-Plastic Power-Law Hardening material
model 35

PARAMETERS FOR MODEL FOAM_PLASTICITY
in Foam Plasticity material model 38

PARAMETERS FOR MODEL IDEAL_GAS
in Ideal Gas material model 47
135

PARAMETERS FOR MODEL JWL
in JWL material model 46

PARAMETERS FOR MODEL MIE_GRUNEISEN 44
PARAMETERS FOR MODEL

MIE_GRUNEISEN_POWER_SERIES
in Mie-Gruneisen Power-Series material model 45

PARAMETERS FOR MODEL
ORTHOTROPIC_CRUSH

in Orthotropic Crush material model 40
PARAMETERS FOR MODEL ORTHOTROPIC_RATE

in Orthotropic Rate material model 42
PARAMETERS FOR MODEL SOIL_FOAM

in Soil and Crushable Foam material model 36
PARAMETERS FOR PRESTO REGION

in Time Stepping Block 57
contents of 59

PERIODIC 73
PHI

in Foam Plasticity material model 38
PMIN

in Mie-Gruneisen material model 44
in Mie-Gruneisen Power-Series material model 45

POINT
in Contact Definition

in Analytic Plane 82
description of 86

POISSONS RATIO
in Elastic material model 33
in Elastic-Plastic material model 34
in Elastic-Plastic Power-Law Hardening material

model 35
in Foam Plasticity material model 38
in Orthotropic Crush material model 40
in Orthotropic Rate material model 42
in Soil and Crushable Foam material model 36

POISSR
in Mie-Gruneisen material model 44
in Mie-Gruneisen Power-Series material model 45

PRESCRIBED ACCELERATION 65
PRESCRIBED DISPLACEMENT 63
PRESCRIBED FORCE 69
PRESCRIBED MOMENT 70
PRESCRIBED QUANTITY

for Periodic boundary condition 73
PRESCRIBED ROTATION 66
PRESCRIBED VELOCITY 64
PRESSURE 69
PRESSURE COEFFICIENTS

for Cavity Expansion boundary condition 71
PRESSURE CUTOFF

in Soil and Crushable Foam material model 36
PRESSURE FUNCTION

in Soil and Crushable Foam material model 36
PRESTO PROCEDURE 57

about 57
PRESTO REGION 61

about 57
PROPERTY SPECIFICATION FOR MATERIAL 32

about 51

Q
QUADRATIC BULK VISCOSITY 52

R
R1

in JWL material model 46
R2

in JWL material model 46
RADIAL AXIS

for Periodic boundary condition 73
for Prescribed Velocity boundary condition 64

RADIUS
in Contact Definition

in Analytic Cylinder 82
description of 87

in Analytic Sphere 82
description of 88

RATE FUNCTION
in Orthotropic Rate material model 42

REMOVE INITIAL OVERLAP
in Contact Definition 82

description of 84
RESTART 28

about 26
RESTART DATA 104

about 26
RESTART TIME 27

about 26
with Restart Data 104

RESULTS OUTPUT 95
RHO_0

in Ideal Gas material model 47
in JWL material model 46
in Mie-Gruneisen material model 44
in Mie-Gruneisen Power-Series material model 45

S
SCALE FACTOR

for Gravity boundary condition 71
for Periodic boundary condition 73
for Prescribed Acceleration boundary condition 65
for Prescribed Displacement boundary condition 63
for Prescribed Force boundary condition 69
for Prescribed Moment boundary condition 70
for Prescribed Rotation boundary condition 66
for Prescribed Velocity boundary condition 64
for Pressure boundary condition 69

SEARCH TOLERANCE 78
for Periodic boundary condition 73

SHEAR EXPONENT
in Foam Plasticity material model 38

SHEAR HARDENING
in Foam Plasticity material model 38

SHEAR MODULUS
in Elastic material model 33
in Elastic-Plastic material model 34
in Elastic-Plastic Power-Law Hardening material

model 35
in Foam Plasticity material model 38
in Orthotropic Crush material model 40
in Orthotropic Rate material model 42
136

in Soil and Crushable Foam material model 36
SHEAR STRENGTH

in Foam Plasticity material model 38
SHELL INTEGRATION POINTS 53
SHELL INTEGRATION SCHEME 53
SHELL SCALE THICKNESS 53
SHUG

in Mie-Gruneisen material model 44
SIERRA 26
SILENT BOUNDARY 75
SLAVE

in Contact Definition
in Interaction 82, 91

description of 92
SOLID MECHANICS USE MODEL 51
SPOT WELD 75
START TIME 57

in History Output 100
description of 102

in Restart Data 104
description of 105

in Results Output 95
description of 98

STEP INTERVAL 60
in Parameters for Presto Region 59

STRUCTURE NAME 80
SURFACE

for Cavity Expansion boundary condition 71
for Fixed Displacement boundary condition 63
for Fixed Rotation boundary condition 65
for Prescribed Acceleration boundary condition 65
for Prescribed Displacement boundary condition 63
for Prescribed Force boundary condition 69
for Prescribed Moment boundary condition 70
for Prescribed Rotation boundary condition 66
for Prescribed Velocity boundary condition 64
for Pressure boundary condition 69
for Spot-Weld boundary condition 75
in Silent boundary condition 75

SURFACES
for Periodic boundary condition 73
in Contact Definition

in Interaction 82, 91
description of 92

T
T FUNCTION

in Orthotropic Rate material model 42
TANGENTIAL DISPLACEMENT FUNCTION

for Spot-Weld boundary condition 75
TANGENTIAL DISPLACEMENT SCALE FACTOR

for Spot-Weld boundary condition 75
TANGENTIAL TOLERANCE

in Contact Definition
in Defaults 82, 88

description of 89
in Interaction 82, 91

TARGET NORMAL
for Cavity Expansion boundary condition 71

TDET

in JWL material model 46
TERMINATION TIME 58

in History Output 100
description of 103

in Restart Data 104
description of 106

in Results Output 95
description of 99

THETA
for Periodic boundary condition 73

TIED MODEL
in Contact Definition 82

about 85
description of 86

TIME CONTROL 57
about 57
example of 61

TIME STEP INCREASE FACTOR 59
in Parameters for Presto Region 59

TIME STEP SCALE FACTOR 59
in Parameters for Presto Region 59
with Element Numerical Formulation 55

TIME STEPPING BLOCK 57
TIMESTEP ADJUSTMENT INTERVAL

in History Output 100
description of 102

in Restart Data 104
description of 105

in Results Output 95
description of 98

TIP RADIUS
for Cavity Expansion boundary condition 71

TITLE 26
TL FUNCTION

in Orthotropic Rate material model 42
TRUSS AREA 54
TX

in Orthotropic Rate material model 42
TY

in Orthotropic Rate material model 42
TYPE 29
TZ

in Orthotropic Rate material model 42

U
USE FINITE ELEMENT MODEL 62

V
VALUES 29
VARIABLE

in History Output
about 101
for global variables 100

description of 101
for nodal and element variables 100

description of 101
VMIN

in Orthotropic Crush material model 40
137

W
W FUNCTION

in Orthotropic Rate material model 42
WT FUNCTION

in Orthotropic Rate material model 42

X
XDET

in JWL material model 46

Y
Y_0

in Mie-Gruneisen material model 44
in Mie-Gruneisen Power-Series material model 45

YDET
in JWL material model 46

YIELD STRESS
in Elastic-Plastic material model 34
in Elastic-Plastic Power-Law Hardening material

model 35
in Orthotropic Crush material model 40
in Orthotropic Rate material model 42

YOUNGS MODULUS
in Elastic material model 33
in Elastic-Plastic material model 34
in Elastic-Plastic Power-Law Hardening material

model 35
in Foam Plasticity material model 38
in Orthotropic Crush material model 40
in Orthotropic Rate material model 42
in Soil and Crushable Foam material model 36

Z
ZDET

in JWL material model 46
138

Distribution

Scott W. Doebling
Los Alamos National Laboratory
PO Box 1663 MS P946
Los Alamos, NM 87545

Internal

1 MS-0318 P. Yarrington, 9230
1 MS-0321 W. J. Camp, 9200
1 MS-0427 J. R. Weatherby, 2134
1 MS-0521 S. T. Montgomery, 2561
1 MS-0807 B. Cole, 9338
1 MS-0819 K. H. Brown, 9231
1 MS-0819 D. E. Carroll, 9231
1 MS-0819 S. Carroll, 9231
1 MS-0819 R. R. Drake, 9231
1 MS-0819 R. M. Summers, 9231
1 MS-0826 J. S. Rath, 9143
1 MS-0826 J. R. Stewart, 9143
1 MS-0826 J. D. Zepper, 9143
1 MS-0827 H. C. Edwards, 9143
1 MS-0827 M. E. Hamilton, 9143
1 MS-0827 T. J. Otahal, 9143
1 MS-0834 A. C. Ratzel, 9110
1 MS-0834 P. R. Schunk, 9114
1 MS-0835 K. F. Alvin, 9142
1 MS-0835 E. A. Boucheron, 9141
1 MS-0835 S. W. Bova, 9141
1 MS-0835 N. K. Crane, 9142
1 MS-0835 R. R. Lober, 9141
1 MS-0835 J. M. McGlaun, 9140
1 MS-0835 K. H. Pierson, 9142
1 MS-0835 T. F. Walsh, 9142
1 MS-0841 T. C. Bickel, 9100
1 MS-0847 C. R. Adams, 9125
1 MS-0847 S. W. Attaway, 9134
1 MS-0847 M. K. Bhardwaj, 9142
1 MS-0847 F. Bitsie, 9124
1 MS-0847 M. L. Blanford, 9142
1 MS-0847 S. N. Burchett, 9126
1 MS-0847 H. Duong, 9126
139

1 MS-0847 C. W. Fulcher, 9125
1 MS-0847 K. W. Gwinn, 9126

10 MS-0847 A. S. Gullerud, 9142
1 MS-0847 T. D. Hinnerichs, 9126
1 MS-0847 J. Jung, 9127
1 MS-0847 S. W. Key, 9142

10 MS-0847 J. R. Koteras, 9142
1 MS-0847 J. S. Lash, 9126
1 MS-0847 R. A. May, 9126
1 MS-0847 K. E. Metzinger, 9126
1 MS-0847 J. A. Mitchell, 9142
1 MS-0847 H. S. Morgan, 9120
1 MS-0847 V. L. Porter, 9142
1 MS-0847 G. M. Reese, 9142
1 MS-0847 G. D. Sjaardema, 9143
1 MS-0847 C. M. Stone, 9142
1 MS-0847 J. W. Swegle, 9142
1 MS-0893 M. K. Neilsen, 9123
1 MS-0893 W. M. Scherzinger, 9123
1 MS-0893 G. W. Wellman, 9123
1 MS-1110 D. E. Womble, 9214
1 MS-1111 K. D. Devine, 9226
1 MS-1111 C. T. Vaughan, 9224
1 MS-1185 J. Pott, 15417
1 MS-9001 J. L. Handrock, 1843
1 MS-9042 J. Crowell, 8727
1 MS-9042 J. Dike, 8727
1 MS-9042 R. Gilbert-O’Neil, 8727
1 MS-9042 P. M. Gullett, 8727
1 MS-9042 B. Kistler, 8727
1 MS-9042 C. Moen, 8728
1 MS-9042 V. Revelli, 8727
1 MS-9042 P. A. Spence, 8727
1 MS-9161 E-P Chen, 8726
1 MS-9161 P. A. Klein, 8726

1 MS-9018 Central Technical Files, 8945-1
2 MS-0899 Technical Library, 9616
2 MS-0612 Review and Approval Desk, 9612, For DOE OSTI
140

	Abstract
	Acknowledgments
	Contents
	Figures
	1 Introduction
	1.1 Overall Input Structure
	1.2 Conventions for Command Descriptions
	1.2.1 Key Words
	1.2.2 User-Specified Input
	1.2.3 Optional Input
	1.2.4 Default Values
	1.2.5 Multiple Options for Values

	1.3 Style Guidelines
	1.3.1 Comments
	1.3.2 Continuation Lines
	1.3.3 Case
	1.3.4 Commas
	1.3.5 Blank Spaces
	1.3.6 General Format of the Command Lines
	1.3.7 Delimiters
	1.3.8 Order of Commands
	1.3.9 Abbreviated END Specifications
	1.3.10 Indentation

	1.4 Naming Conventions Associated with the Exodus II Database
	1.5 Major Scope Definitions for a Presto Input File

	2 Command Descriptions
	2.1 Utility/General Commands
	2.1.1 SIERRA Command Block
	2.1.2 Title
	2.1.3 Restart Control
	2.1.3.1 Restart Time
	2.1.3.2 Automatic Restart

	2.1.4 Functions
	2.1.5 Axes, Directions, and Points

	2.2 Materials
	2.2.1 Elastic Model
	2.2.2 Elastic-Plastic Model
	2.2.3 Elastic-Plastic Power-Law Hardening Model
	2.2.4 Soil and Crushable Foam Model
	2.2.5 Foam Plasticity Model
	2.2.6 Orthotropic Crush Model
	2.2.7 Orthotropic Rate Model
	2.2.8 Mie-Gruneisen Model
	2.2.9 Mie-Gruneisen Power-Series Model
	2.2.10 JWL (Jones-Wilkins-Lee) Model
	2.2.11 Ideal Gas Model

	2.3 Finite Element Model
	2.3.1 Definition of Material Model
	2.3.2 Element Strain Formulation
	2.3.3 Linear and Quadratic Bulk Viscosity
	2.3.4 Hourglass Control
	2.3.5 Membrane Scale Thickness
	2.3.6 Control Parameters for Shell Elements
	2.3.7 Truss Area
	2.3.8 Damper Area
	2.3.9 Energy Deposition
	2.3.10 Element Numerical Formulation
	2.3.11 Deactivate All Elements in an Element Block

	2.4 Presto Region and Procedure
	2.4.1 Presto Procedure
	2.4.2 Time Control
	2.4.2.1 Command Blocks for Time Control and Time Stepping
	2.4.2.2 Initial Time Step
	2.4.2.3 Time Step Scale Factor
	2.4.2.4 Time Step Increase Factor
	2.4.2.5 Step Interval
	2.4.2.6 Example

	2.4.3 Presto Region

	2.5 Use Finite Element Model
	2.6 Kinematic Boundary Conditions
	2.6.1 Fixed Displacement Components
	2.6.2 Prescribed Displacement
	2.6.3 Prescribed Velocity
	2.6.4 Prescribed Acceleration
	2.6.5 Fixed Rotation
	2.6.6 Prescribed Rotation

	2.7 Initial Conditions
	2.7.1 Initial Velocity Direction
	2.7.2 Initial Angular Velocity

	2.8 Force Boundary Conditions
	2.8.1 Pressure
	2.8.2 Prescribed Force
	2.8.3 Prescribed Moment

	2.9 Specialized Boundary Conditions
	2.9.1 Gravity
	2.9.2 Cavity Expansion
	2.9.3 Periodic
	2.9.4 Silent Boundary
	2.9.5 Spot-Weld

	2.10 Constraints
	2.10.1 Constant Distance Constraint
	2.10.2 Hex Shell Constraint

	2.11 Mass Property Calculations
	2.12 Contact
	2.12.1 Contact Definition Block
	2.12.2 Descriptions of Contact Surfaces
	2.12.2.1 Contact Surface
	2.12.2.2 Contact All Blocks

	2.12.3 Remove Initial Overlap
	2.12.4 Angle for Multiple Interactions
	2.12.5 Iterative Enforcement
	2.12.6 Friction Models
	2.12.6.1 Frictionless Model
	2.12.6.2 Constant Friction Model
	2.12.6.3 Tied Model

	2.12.7 Analytic Contact Surfaces
	2.12.7.1 Plane
	2.12.7.2 Cylinder
	2.12.7.3 Sphere

	2.12.8 Default Values for Interactions
	2.12.8.1 Normal and Tangential Tolerance
	2.12.8.2 Normal and Tangential Overlap Tolerance
	2.12.8.3 Friction Model
	2.12.8.4 Automatic Kinematic Partition

	2.12.9 Values for Specific Interactions
	2.12.9.1 Surface Identification
	2.12.9.2 Kinematic Partition

	2.12.10 Example

	2.13 Results Output
	2.13.1 Output Nodal Variables
	2.13.2 Output Element Variables
	2.13.3 Output Global Variables
	2.13.4 Set Begin Time for Results Output
	2.13.5 Adjust Interval for Time Steps
	2.13.6 Output Interval Specified by Time Increment
	2.13.7 Additional Times for Output
	2.13.8 Output Interval Specified by Step Increment
	2.13.9 Additional Steps for Output
	2.13.10 Set End Time for Results Output

	2.14 History Output
	2.14.1 Output Variables
	2.14.1.1 Nodal and Element Output Variables
	2.14.1.2 Global Output Variables

	2.14.2 Set Begin Time for History Output
	2.14.3 Adjust Interval for Time Steps
	2.14.4 Output Interval Specified by Time Increment
	2.14.5 Additional Times for Output
	2.14.6 Output Interval Specified by Step Increment
	2.14.7 Additional Steps for Output
	2.14.8 Set End Time for History Output

	2.15 Restart Data
	2.15.1 Set Begin Time for Restart Writes
	2.15.2 Adjust Interval for Time Steps
	2.15.3 Restart Interval Specified by Time Increment
	2.15.4 Additional Times for Restart
	2.15.5 Restart Interval Specified by Step Increment
	2.15.6 Additional Steps for Restart
	2.15.7 Set End Time for Restart Writes

	3 Example Problem
	References
	Appendix A: Command Specification
	Appendix B: Registered Variables
	Index
	Distribution

